Zawód: Technik elektroradiolog
Kategorie: Medycyna nuklearna Fizyka medyczna
Prawidłowo wskazałeś zestaw aparatury typowej dla medycyny nuklearnej: scyntygraf, gammakamera, emisyjna tomografia i PET. Wszystkie te urządzenia mają jedną wspólną cechę – rejestrują promieniowanie emitowane z wnętrza ciała pacjenta po podaniu radiofarmaceutyku. To właśnie odróżnia medycynę nuklearną od klasycznej radiologii, gdzie źródło promieniowania jest na zewnątrz (np. lampa rentgenowska). Scyntygraf i gammakamera to w praktyce nazwy bliskoznaczne – gammakamera jest współczesnym urządzeniem rejestrującym promieniowanie gamma i tworzącym obrazy scyntygraficzne. Wykorzystuje się ją np. w scyntygrafii kości, tarczycy, perfuzji mięśnia sercowego. Emisyjna tomografia (SPECT – tomografia emisyjna pojedynczych fotonów) pozwala uzyskać obrazy przekrojowe, podobnie jak tomografia komputerowa, ale pokazuje głównie funkcję narządu, a nie tylko jego budowę. Dzięki temu można ocenić perfuzję mózgu, żywotność mięśnia sercowego czy czynność nerek. PET, czyli pozytonowa tomografia emisyjna, wykorzystuje radioizotopy emitujące pozytony i zjawisko anihilacji. Standardowo stosuje się np. 18F-FDG do oceny metabolizmu glukozy w onkologii, kardiologii czy neurologii. W nowoczesnych pracowniach łączy się PET z CT lub MR (PET/CT, PET/MR), co pozwala na bardzo dokładne połączenie informacji funkcjonalnej z anatomiczną. Z mojego doświadczenia to właśnie zrozumienie, że medycyna nuklearna bada przede wszystkim funkcję i metabolizm, a nie samą anatomię, bardzo pomaga w zapamiętaniu, jakie urządzenia do niej należą. W dobrych praktykach ważne jest też prawidłowe przygotowanie radiofarmaceutyku, kontrola jakości aparatury oraz ścisłe przestrzeganie zasad ochrony radiologicznej, bo pracujemy z promieniowaniem jonizującym podanym do organizmu pacjenta.