W obrazowaniu rezonansu magnetycznego kluczową rolę odgrywa moment magnetyczny protonów, głównie protonów wodoru obecnych w cząsteczkach wody i tłuszczu w organizmie. Każdy proton zachowuje się trochę jak miniaturowy magnes – ma swój spin i związany z nim moment magnetyczny. W silnym polu magnetycznym skanera MR te „magnesiki” ustawiają się wzdłuż linii pola, a następnie są wytrącane z równowagi impulsami fal radiowych (RF). Po wyłączeniu impulsu RF protony wracają do stanu równowagi i oddają energię, co rejestruje system odbiorczy. Właśnie ta sygnałowa odpowiedź protonów (sygnał MR) jest przeliczana komputerowo na obraz. Moim zdaniem najważniejsze praktyczne skojarzenie dla technika jest takie: im więcej protonów wodoru w tkance, tym silniejszy sygnał, dlatego np. tkanka tłuszczowa czy mięśniowa wygląda inaczej niż kość korowa, a płyn mózgowo-rdzeniowy inaczej niż istota biała w mózgu. Różnice w czasie relaksacji T1 i T2 protonów w różnych tkankach pozwalają na dobranie odpowiednich sekwencji (T1-zależnych, T2-zależnych, PD, FLAIR, STIR itd.), co jest standardem w protokołach badań MR zgodnie z zaleceniami producentów i wytycznymi towarzystw radiologicznych. W praktyce klinicznej technik, planując badanie, świadomie wykorzystuje fizykę protonów: dobiera parametry takie jak TR, TE, flip angle, żeby podkreślić różnice w zachowaniu momentów magnetycznych protonów w danych strukturach. Bez momentu magnetycznego protonów nie byłoby ani kontrastu tkanek, ani samego sygnału w MR – cała metoda po prostu by nie działała. Dlatego właśnie poprawna odpowiedź to protony, a nie inne cząstki.
W rezonansie magnetycznym często myli się, które cząstki biorą realnie udział w wytwarzaniu sygnału. Intuicyjnie ktoś może pomyśleć: przecież jądro atomowe ma protony i neutrony, więc może każde z nich „coś tam daje” do obrazu. Albo: elektron też ma ładunek i moment magnetyczny, to czemu nie on? Technicznie rzecz biorąc, moment magnetyczny mają i protony, i neutrony, i elektrony, a nawet pozytony, ale w warunkach klinicznego MR wykorzystuje się praktycznie wyłącznie moment magnetyczny protonów wodoru. Neutrony są cząstkami obojętnymi elektrycznie, posiadają co prawda moment magnetyczny, jednak ich właściwości i liczebność w organizmie nie pozwalają na efektywne zastosowanie w standardowych skanerach MR. Cała aparatura, częstotliwości Larmora, cewki nadawczo-odbiorcze są zoptymalizowane właśnie pod rezonans jądrowy protonów wodoru, a nie neutronów. To nie jest przypadek, tylko wynik fizyki i praktyki inżynierskiej. Elektrony z kolei są wykorzystywane w zupełnie innej technice – w elektronowym rezonansie paramagnetycznym (EPR), który w medycynie klinicznej jest stosowany marginalnie, głównie w badaniach naukowych, a nie w klasycznym obrazowaniu MR całego ciała czy mózgu. Elektrony mają inne częstotliwości rezonansowe, wymagają innych pól magnetycznych i całkowicie innej konstrukcji urządzenia. Pozytony natomiast kojarzą się raczej z badaniem PET w medycynie nuklearnej, gdzie mamy anihilację pozyton–elektron i rejestrację fotonów 511 keV, a nie z MR. W rezonansie magnetycznym nie generujemy, nie śledzimy ani nie wykorzystujemy pozytonów. Typowy błąd myślowy polega na wrzuceniu wszystkich technik obrazowych „pod jedną czapkę” promieniowania i cząstek. Tymczasem MR to metoda oparta na zjawisku rezonansu jądrowego protonów wodoru w silnym polu magnetycznym, podczas gdy PET czy inne techniki nuklearne bazują na rozpadających się izotopach i promieniowaniu gamma. Dlatego wybór neutronów, pozytonów albo elektronów jako źródła sygnału w standardowym badaniu MR jest po prostu niezgodny z fizyką tej metody i z praktyką kliniczną stosowaną na co dzień w pracowniach rezonansu.