W pozytonowej tomografii emisyjnej (PET) kluczowym zjawiskiem fizycznym jest właśnie anihilacja pary elektron–pozyton. Radiofarmaceutyk podany pacjentowi emituje pozytony, czyli antycząstki elektronów. Pozyton w tkankach bardzo szybko traci energię kinetyczną, zderzając się z elektronami otoczenia, aż w końcu dochodzi do ich spotkania i anihilacji. W wyniku tej anihilacji powstają dwa fotony promieniowania gamma o energii 511 keV każdy, emitowane prawie dokładnie w przeciwnych kierunkach (pod kątem około 180°). To właśnie te dwa skorelowane fotony są rejestrowane w aparacie PET w trybie tzw. koincydencji. Z mojego doświadczenia to jest najważniejszy fizyczny „trik” PET-u: aparat nie widzi bezpośrednio pozytonu, tylko parę fotonów po anihilacji. Detektory ułożone dookoła pacjenta rejestrują jednoczesne (w bardzo krótkim oknie czasowym) uderzenia fotonów w przeciwległe kryształy scyntylacyjne. Na tej podstawie system rekonstruuje linię, wzdłuż której musiała zajść anihilacja, czyli tzw. line of response (LOR). Sumując miliony takich zdarzeń, komputer odtwarza rozkład radioaktywności w organizmie. W praktyce klinicznej, np. w onkologii, pozwala to ocenić metabolizm glukozy w guzach przy użyciu 18F-FDG albo wychwyt innych znaczników. Standardy pracowni medycyny nuklearnej (np. EANM) podkreślają znaczenie prawidłowego doboru radiofarmaceutyku i kalibracji systemu detekcji właśnie pod kątem rejestracji fotonów 511 keV i ich koincydencji. Moim zdaniem, jak dobrze zrozumiesz mechanizm anihilacji i rejestracji tych dwóch fotonów, dużo łatwiej ogarnąć później takie rzeczy jak korekcja osłabienia, rozpraszania czy artefakty w obrazach PET/CT.
W PET nie rejestruje się przypadkowego promieniowania ani ogólnie „jakichś” rozproszeń, tylko bardzo konkretne fotony powstałe w wyniku anihilacji pary elektron–pozyton. Pomyłki biorą się często z mieszania różnych zjawisk fizycznych, które wszystkie występują w diagnostyce obrazowej, ale pełnią inne role. Rozpraszanie coulombowskie to oddziaływanie naładowanych cząstek z polami elektrycznymi jąder lub elektronów. Ma znaczenie np. przy przechodzeniu elektronów czy protonów przez materię, wpływa na tor cząstki, ale nie jest zjawiskiem, które generuje fotony 511 keV wykorzystywane w PET. Można powiedzieć, że jest to bardziej efekt uboczny ruchu naładowanych cząstek niż źródło obrazu. Rozpraszanie comptonowskie z kolei jest bardzo ważne w fizyce promieniowania jonizującego i w klasycznej radiologii. Foton gamma zderza się z elektronem, oddaje mu część energii i zmienia kierunek. W PET takie rozpraszanie niestety też się dzieje, ale jest traktowane jako źródło błędu – foton po rozproszeniu ma inny kierunek i energię, co zaburza dokładność lokalizacji miejsca anihilacji. Systemy PET stosują różne algorytmy korekcji rozpraszania comptonowskiego, ale nie jest ono tym zjawiskiem, które chcemy zarejestrować jako sygnał użyteczny. Anihilacja pary proton–antyproton to już w ogóle inna liga fizyki cząstek, spotykana w akceleratorach, a nie w rutynowej medycynie nuklearnej. W organizmie nie wstrzykujemy antyprotonów, tylko radioizotopy emitujące pozytony (np. 18F, 11C, 13N, 15O). Typowym błędem jest też myślenie, że „skoro to medycyna nuklearna, to pewnie chodzi o jakieś ogólne promieniowanie gamma z rozpadu jądrowego”. W PET liczy się konkretny mechanizm: emisja pozytonu, jego spowolnienie w tkance i anihilacja z elektronem, prowadząca do emisji dwóch fotonów 511 keV w koincydencji. Dopiero rejestracja tych dwóch fotonów naraz pozwala na precyzyjne odtworzenie położenia źródła. Z praktycznego punktu widzenia warto pamiętać: w PET zawsze myślimy o pozytonach i ich anihilacji, a rozpraszanie i inne efekty traktujemy jako zakłócenia, które trzeba skorygować zgodnie z zaleceniami producentów systemów PET/CT i wytycznymi EANM czy IAEA.