Prawidłowo wskazane zostały protony atomów wodoru, czyli dokładnie to, na czym opiera się klasyczna metoda rezonansu magnetycznego wykorzystywana w medycynie. W obrazowaniu MR wykorzystuje się zjawisko jądrowego rezonansu magnetycznego (NMR). W praktyce oznacza to, że w silnym polu magnetycznym jądra wodoru (protony) ustawiają się zgodnie lub przeciwnie do kierunku pola. Następnie aparat wysyła fale radiowe (impuls RF), które wybijają te protony z ich równowagi. Gdy impuls się kończy, protony wracają do stanu wyjściowego i w tym procesie emitują sygnał, który jest rejestrowany przez cewki odbiorcze. To właśnie ten sygnał jest potem przeliczany komputerowo na obraz przekrojowy ciała. W tkankach ludzkiego organizmu jest bardzo dużo wody i tłuszczu, a więc bardzo dużo atomów wodoru – dlatego MR jest tak czuły na różnice w nawodnieniu i składzie tkanek. W praktyce klinicznej wykorzystuje się to np. do oceny zmian w mózgu (udar, stwardnienie rozsiane), stawach, kręgosłupie, narządach jamy brzusznej. Różne sekwencje (T1, T2, PD, FLAIR, DWI itd.) bazują cały czas na tym samym zjawisku: relaksacji protonów wodoru i różnicach w czasach relaksacji T1 i T2 w różnych tkankach. Z mojego doświadczenia, jak raz się zrozumie, że MR „słucha” protonów wodoru w polu magnetycznym, to dużo łatwiej ogarnąć, dlaczego metal w ciele pacjenta jest problemem, czemu ważne jest jednorodne pole magnetyczne i czemu obecność wody w tkankach tak mocno wpływa na kontrast obrazu. To jest absolutna podstawa fizyki rezonansu, którą warto mieć dobrze poukładaną, bo przewija się wszędzie w diagnostyce obrazowej.
W rezonansie magnetycznym bardzo łatwo pomylić się, bo mamy i elektrony, i protony, i różne pierwiastki w organizmie. Kluczowe jest jednak to, że standardowe kliniczne badania MR oparte są na zjawisku jądrowego rezonansu magnetycznego, a więc dotyczą jąder atomowych, a nie elektronów. Elektrony oczywiście mają własny moment magnetyczny i istnieje coś takiego jak elektronowy rezonans paramagnetyczny, ale nie jest to metoda używana w rutynowej diagnostyce medycznej. W tomografii MR interesują nas przede wszystkim jądra wodoru, czyli protony, bo wodór w organizmie występuje w ogromnej ilości głównie w wodzie i tłuszczu. To zapewnia silny sygnał i dobry stosunek sygnału do szumu, co przekłada się na wysoką jakość obrazu. Wybranie odpowiedzi z elektronami atomów wodoru lub tlenu wynika zwykle z intuicyjnego przekonania, że „coś związanego z magnetyzmem to pewnie elektrony”, bo kojarzymy je z prądem i spinem elektronów. W MR jednak rejestrujemy sygnał z przejść energetycznych jąder w polu magnetycznym, a nie z powłok elektronowych. Z kolei odpowiedzi odwołujące się do protonów atomów tlenu też brzmią na pozór sensownie, bo tlen jest ważnym pierwiastkiem w organizmie, kojarzy się z krwią, utlenowaniem tkanek itd. Problem w tym, że atomów wodoru jest w ciele człowieka znacznie więcej niż tlenu, a dodatkowo właściwości magnetyczne jąder innych pierwiastków (np. tlenu, węgla) są dużo mniej korzystne do klasycznego obrazowania klinicznego: mają słabszy sygnał, inne częstości rezonansowe, trudniejszą technikę pobudzenia i odbioru. Dlatego w codziennej praktyce diagnostycznej bazuje się na protonach wodoru, a nie na tlenie. Typowym błędem myślowym jest też mieszanie pojęcia „magnetyczny” z „elektronowy”, bo w fizyce szkolnej dużo mówi się o elektronach, a mało o jądrze. W medycznym MR trzeba się przestawić: interesuje nas spin jądrowy protonów wodoru w silnym stałym polu magnetycznym i sygnał RF emitowany podczas relaksacji tych protonów. To jest fundament, który potem tłumaczy wszystkie dalsze zagadnienia: dobór sekwencji, kontrast obrazów, wpływ pola magnetycznego i cewek gradientowych.