Prawidłowa odpowiedź opiera się na podstawowej zasadzie fizyki ultradźwięków: im wyższa częstotliwość fali USG, tym silniejsze jest jej tłumienie w tkankach, a więc tym płytsza jest efektywna penetracja wiązki. Fala o wysokiej częstotliwości oddaje więcej energii po drodze – jest bardziej pochłaniana i rozpraszana, więc szybciej „gaśnie” w głębszych strukturach. Dlatego głowice 10–15 MHz używane są do badania tkanek powierzchownych, jak tarczyca, piersi, moszna czy naczynia w USG dopplerowskim, a do jamy brzusznej, nerek czy narządów miednicy typowo stosuje się 3–5 MHz, żeby dotrzeć głębiej. Moim zdaniem to jest jedna z kluczowych zależności, które trzeba mieć w głowie przy każdym doborze głowicy i ustawień aparatu. Wyższa częstotliwość daje lepszą rozdzielczość osiową i boczną – można zobaczyć drobniejsze szczegóły, lepiej odróżnić granice między tkankami, dokładniej ocenić ścianę naczynia czy grubość skóry. Ceną za to jest jednak mniejsza głębokość obrazowania. W codziennej praktyce wygląda to tak, że operator balansuje między rozdzielczością a penetracją: jeśli obraz w głębi jest zbyt słaby, obniża częstotliwość; jeśli bada strukturę leżącą płytko, podkręca częstotliwość, żeby zyskać szczegółowość. W większości zaleceń i podręczników do ultrasonografii ta zasada jest podkreślana jako standard dobrej praktyki: dobór częstotliwości powinien być zawsze dopasowany do głębokości badanej struktury i budowy pacjenta (np. u osób otyłych z reguły schodzi się z częstotliwością niżej). Dobrze jest też pamiętać, że sama regulacja „depth” na aparacie nie zastąpi właściwego wyboru częstotliwości – to dwie różne rzeczy technicznie i fizycznie.
Zależność między częstotliwością a penetracją w ultrasonografii bywa często mylona, bo intuicyjnie wydaje się, że „więcej” znaczy „lepiej i głębiej”. W fizyce ultradźwięków jest dokładnie odwrotnie: im wyższa częstotliwość, tym silniejsze tłumienie fali w tkankach i tym płytszy zasięg użytecznego sygnału. To tłumienie wynika z absorpcji energii i rozpraszania na granicach ośrodków. W efekcie fala o wysokiej częstotliwości traci energię szybciej niż fala o niskiej częstotliwości, więc nie może wiarygodnie zobrazować struktur położonych głęboko. Pojawia się też mylące skojarzenie, że wyższa rozdzielczość obrazu automatycznie zapewni głębszą penetrację. W ultrasonografii rozdzielczość osiowa jest ściśle związana właśnie z częstotliwością – im wyższa, tym lepsza zdolność rozróżniania dwóch blisko położonych struktur. Jednak ta poprawa rozdzielczości odbywa się kosztem głębokości. Standardy pracy w USG mówią wprost: do struktur powierzchownych stosujemy wysokie częstotliwości i wysoką rozdzielczość, do struktur głębokich – niższe częstotliwości i gorszą rozdzielczość, ale za to większą penetrację. Przeciwstawne stwierdzenie, że wzrost częstotliwości pogarsza rozdzielczość, jest sprzeczne z podstawową teorią fal akustycznych i z praktyką kliniczną. Głowice wysokoczęstotliwościowe są właśnie projektowane po to, żeby uzyskać obraz o bardzo wysokiej szczegółowości, tylko na mniejszej głębokości. Typowy błąd myślowy polega na mieszaniu pojęć: część osób utożsamia „silniejszą wiązkę” z „większą głębokością”, tymczasem aparaty kompensują mocą tylko do pewnego stopnia, nie są w stanie pokonać fizycznego prawa tłumienia w tkankach. Podobnie mylące jest przekonanie, że rozdzielczość to coś niezależnego od częstotliwości – w USG to jest bezpośrednio ze sobą powiązane. Dobre praktyki mówią jasno: wybór głowicy i częstotliwości zaczyna się od pytania, jak głęboko leży interesująca nas struktura, a dopiero potem szuka się maksimum rozdzielczości w tym zakresie głębokości, a nie odwrotnie.