Prawidłowo wskazana odpowiedź „skóry i płytko pod skórą” idealnie oddaje główne zastosowanie kliniczne wiązki elektronów w radioterapii. Elektrony mają stosunkowo mały zasięg w tkankach – ich dawka rośnie szybko od powierzchni, osiąga maksimum na kilku–kilkunastu milimetrach głębokości, a potem gwałtownie spada. Moim zdaniem to jest właśnie najważniejszy parametr, który trzeba kojarzyć: krótki zasięg i oszczędzanie głębiej położonych narządów. Dlatego w standardach radioterapii (np. zalecenia ESTRO, krajowe rekomendacje) elektrony stosuje się głównie do leczenia zmian powierzchownych: rak skóry, przerzuty skórne, naciekające blizny pooperacyjne, węzły chłonne leżące płytko, blizna po mastektomii, czasem kikut piersi. W praktyce planowania leczenia fizyk medyczny dobiera energię wiązki elektronów (np. 6 MeV, 9 MeV, 12 MeV) tak, żeby maksymalna dawka pokrywała guz, ale nie „przebijała” zbyt głęboko. To jest właśnie przewaga nad fotonami, które penetrują głęboko i oddają istotną dawkę w narządach położonych za guzem. Wiązka elektronowa pozwala np. napromieniać rozległy rak skóry na czaszce, minimalizując dawkę w mózgu, albo zmiany skórne na klatce piersiowej z ograniczeniem dawki w płucach. Dobrą praktyką jest też stosowanie bolusa (materiału dosłownie położonego na skórze), żeby „przesunąć” maksimum dawki bliżej powierzchni, gdy zmiana jest bardzo płytka. Warto zapamiętać: jak widzisz zmianę nowotworową w skórze lub do ok. 3–4 cm pod skórą, w głowie od razu powinna zapalić się lampka – to potencjalne pole do zastosowania elektronów, oczywiście po weryfikacji onkologicznej i fizycznej.
W radioterapii bardzo łatwo pomylić zastosowania poszczególnych rodzajów promieniowania, bo na co dzień mówi się po prostu „napromienianie” i nie zawsze podkreśla się, czy chodzi o fotony, elektrony czy np. brachyterapię. To często prowadzi do skrótu myślowego: skoro płuca, macica czy prostata są leczone promieniowaniem jonizującym, to pewnie każda z tych lokalizacji może być napromieniana elektronami. Problem w tym, że fizyka wiązki elektronów zupełnie do tego nie pasuje. Elektrony mają ograniczony zasięg w tkankach, a ich profil dawki charakteryzuje się płytkim maksimum i gwałtownym spadkiem w głębi. Guzy płuca są zazwyczaj położone stosunkowo głęboko w klatce piersiowej, za warstwą ściany klatki, mięśni, żeber, a dodatkowo trzeba uwzględnić ruch oddechowy. Do takiego napromieniania używa się fotonów wysokiej energii (teleterapia megawoltowa), ewentualnie nowoczesnych technik jak IMRT/VMAT, a nie elektronów, które po prostu „nie doleciałyby” z odpowiednią dawką do guza. Podobnie jest z macicą. Narząd ten znajduje się w miednicy małej, otoczony jest pętlami jelit, pęcherzem, tkanką tłuszczową. Standardem są tutaj wiązki fotonowe z zewnątrz oraz brachyterapia ginekologiczna, gdzie źródło promieniowania umieszcza się wewnątrz jamy macicy lub pochwy. Elektrony nie zapewniłyby równomiernego rozkładu dawki na odpowiedniej głębokości, a przy próbie zwiększania energii traci się ich podstawową zaletę, czyli ochronę struktur głębiej położonych. W przypadku prostaty sytuacja jest jeszcze bardziej wyraźna. Gruczoł krokowy leży głęboko w miednicy, za spojeniem łonowym, w sąsiedztwie odbytnicy i pęcherza moczowego. Do jego leczenia stosuje się głównie fotony (IMRT, VMAT, IGRT) lub brachyterapię (źródła wewnątrz prostaty), właśnie po to, by precyzyjnie kształtować rozkład dawki w głębi ciała. Użycie elektronów byłoby tu fizycznie nieefektywne i sprzeczne z dobrymi praktykami planowania radioterapii. Typowy błąd myślowy polega na tym, że ktoś zapamiętuje: „elektrony = radioterapia, a radioterapia = leczenie raka płuca, macicy, prostaty”, i stąd wychodzi mylne skojarzenie. Klucz to nauczyć się łączyć typ wiązki z jej zasięgiem i charakterystyką dawki: elektrony – zmiany skórne i płytkie; fotony – narządy głębokie; brachyterapia – zmiany dostępne od wewnątrz (jamy ciała, tkanki miękkie). Takie uporządkowanie znacznie ułatwia później rozwiązywanie zadań testowych i, co ważniejsze, rozumienie praktyki klinicznej.