Prawidłowo, promieniowanie X to wiązka fotonów, czyli kwantów energii elektromagnetycznej, a nie strumień cząstek naładowanych. Foton nie ma ładunku elektrycznego ani masy spoczynkowej, dlatego nie ugina się w polu elektrycznym ani magnetycznym w taki sposób, jak robią to elektrony czy protony. To jest kluczowa cecha, która odróżnia promieniowanie X od wiązek cząstek stosowanych np. w niektórych technikach radioterapii (protonoterapia, wiązki elektronowe). W diagnostyce obrazowej, w klasycznym RTG, TK czy mammografii zawsze pracujemy z promieniowaniem elektromagnetycznym – dokładnie takimi właśnie kwantami energii. W praktyce oznacza to, że do kształtowania wiązki promieniowania X używamy kolimatorów, filtrów i geometrii lampy rentgenowskiej, a nie cewek magnetycznych jak w akceleratorach cząstek. Z mojego doświadczenia to rozróżnienie pomaga też zrozumieć, dlaczego osłony z ołowiu są skuteczne: nie „zaginają” promieniowania, tylko je pochłaniają lub silnie osłabiają przez zjawiska fotoelektryczne i Comptona. W standardach ochrony radiologicznej i dobrej praktyce technika elektroradiologii zakłada się, że wiązka X rozchodzi się liniowo, dlatego tak ważne jest prawidłowe pozycjonowanie pacjenta, dobór odległości ognisko–detektor i stosowanie przesłon, żeby ograniczyć niepotrzebne naświetlenie tkanek sąsiednich. W tomografii komputerowej to samo zjawisko wykorzystuje się do rekonstrukcji obrazu na podstawie osłabienia fotonów w różnych kierunkach. Moim zdaniem, jak raz się zapamięta, że promieniowanie X to „światło o bardzo dużej energii”, tylko o krótszej długości fali, to od razu łatwiej ogarnąć całą fizykę radiologii i sens parametrów ekspozycji, takich jak kV i mAs.
W tym pytaniu łatwo się złapać na myleniu promieniowania X z wiązką cząstek naładowanych. W odpowiedziach błędnych pojawia się wątek cząstek dodatnio lub ujemnie naładowanych, które uginają się w polu elektromagnetycznym. Tak zachowują się np. protony, jony lub elektrony – i rzeczywiście w akceleratorach cząstek używa się pól magnetycznych do ich ogniskowania i zakrzywiania toru. Natomiast lampa rentgenowska nie wytwarza wiązki elektronów skierowanej na pacjenta. Elektrony są tam tylko wewnątrz lampy, przyspieszane między katodą a anodą, a promieniowanie X powstaje dopiero w wyniku ich hamowania w materiale anody (głównie zjawisko hamowania i promieniowanie charakterystyczne). Na zewnątrz z obudowy lampy wychodzą już fotony – kwanty promieniowania elektromagnetycznego. Innym częstym nieporozumieniem jest przekonanie, że skoro mówimy o polu elektromagnetycznym, to promieniowanie X musi się w nim jakoś uginać. Foton nie ma ładunku, więc nie doświadczy siły Lorentza, która zakrzywia tor cząstek naładowanych. W medycynie, zarówno w diagnostyce RTG, TK, jak i w mammografii, przyjmuje się, że promieniowanie X rozchodzi się po liniach prostych, a jego osłabienie w tkankach zależy od energii fotonów, gęstości i liczby atomowej materiału, a nie od jakiegoś „zakrzywiania w polu”. Moim zdaniem źródłem błędu jest często mieszanie pojęć: promieniowanie jonizujące kojarzone jest automatycznie z cząstkami, a tymczasem mamy dwie duże grupy – promieniowanie korpuskularne (np. alfa, beta, protony) i promieniowanie elektromagnetyczne (X, gamma). Dla technika elektroradiologii to rozróżnienie jest bardzo praktyczne: od niego zależy sposób ochrony radiologicznej, konstrukcja aparatury oraz interpretacja zjawisk fizycznych, takich jak zjawisko fotoelektryczne, rozpraszanie Comptona czy powstawanie kontrastu na obrazie. Jeśli myślimy o wiązce X jak o strumieniu fotonów, a nie elektronów czy jonów, wtedy cała fizyka diagnostyki obrazowej robi się dużo bardziej spójna.