Prawidłowo: wysoka rozdzielczość przestrzenna w MR zależy głównie od wielkości piksela, a ten wynika z relacji pole widzenia (FoV) / matryca obrazująca. Im mniejszy FoV i im większa matryca, tym mniejszy piksel i tym wyraźniej widoczne drobne struktury. Matematycznie można to zapisać bardzo prosto: rozmiar piksela = FoV / liczba punktów w danym kierunku. Czyli jeśli zmniejszamy FoV, a jednocześnie zwiększamy liczbę próbek (większa matryca, np. z 256×256 na 512×512), to piksele robią się „gęstsze”, a obraz bardziej szczegółowy. Tak właśnie robi się np. badania stawów, przysadki, oczodołów – małe FoV, wysoka matryca, wysokie wymagania co do geometrii i ostrości. W praktyce technik zawsze musi szukać kompromisu: mniejszy FoV i większa matryca oznaczają dłuższy czas skanowania i mniejszy sygnał na piksel (SNR spada, bo ten sam sygnał z większego obszaru dzielimy na więcej elementów). Dlatego w standardach protokołów MR (np. neuroradiologicznych) ustala się minimalnie akceptowalny SNR i na tej podstawie dobiera FoV i matrycę. Moim zdaniem warto na to patrzeć praktycznie: jeśli lekarz prosi o „wysoką rozdzielczość”, to technik od razu myśli o zmniejszeniu FoV w stosunku do interesującej okolicy anatomicznej i zwiększeniu matrycy, o ile czas badania i współpraca pacjenta na to pozwalają. To jest klasyczna dobra praktyka w MR, stosowana praktycznie w każdym nowoczesnym protokole wysokorozdzielczym, np. w badaniach 3D T1 mózgu czy drobnych struktur kostno‑chrzęstnych.
W obrazowaniu MR łatwo się pomylić, bo intuicja podpowiada, że „im większy FoV, tym więcej widać, więc jakość rośnie”. To jest typowy błąd myślowy: mylenie zakresu anatomicznego z rozdzielczością. Duże FoV faktycznie obejmuje większy obszar ciała, ale jeśli matryca pozostaje taka sama lub jest nawet zmniejszana, to każdy pojedynczy piksel reprezentuje większy fragment tkanek, więc szczegółów jest mniej. Rozdzielczość przestrzenna to nie jest to, ile narządów wejdzie w kadr, tylko jak małe struktury da się od siebie odróżnić na obrazie. Dlatego powiększanie FoV przy tej samej lub mniejszej matrycy pogarsza rozdzielczość, choć obraz „wydaje się” lepszy, bo widzimy całe kolano albo całą głowę. Drugie częste nieporozumienie dotyczy samej matrycy. Zmniejszenie matrycy oznacza mniej punktów pomiarowych w przestrzeni k‑przestrzeni, czyli de facto większe piksele po rekonstrukcji. Nawet jeśli dołożymy do tego mały FoV, to i tak ograniczamy ilość informacji przestrzennej. Efekt jest taki, że struktury drobne, jak nerwy, małe naczynia, cienkie warstwy chrząstki, zaczynają się zlewać i obraz robi się „miękki”, mniej ostry. Z mojego doświadczenia wiele osób na początku nauki MR skupia się tylko na jednym parametrze – albo na FoV, albo na macierzy – i nie patrzy na ich proporcje. Tymczasem standardy i dobre praktyki w MR mówią jasno: o rozdzielczości decyduje rozmiar piksela i grubość warstwy, a rozmiar piksela zależy jednocześnie od FoV i liczby punktów w matrycy. Dlatego konfiguracje typu duży FoV z małą matrycą lub mały FoV z małą matrycą są kompromisami raczej do szybkich przeglądowych sekwencji, a nie do badań wysokorozdzielczych. W protokołach wysokiej jakości zawsze dąży się do możliwie małego FoV obejmującego tylko interesujący obszar i możliwie dużej matrycy, oczywiście z uwzględnieniem czasu skanowania i SNR. Zrozumienie tego mechanizmu bardzo pomaga potem świadomie modyfikować parametry, zamiast klikać „na czuja”.