Wysoka rozdzielczość przestrzenna w obrazowaniu MR zależy tak naprawdę od dwóch kluczowych parametrów: wielkości pola widzenia (FoV, field of view) oraz rozmiaru matrycy, czyli liczby pikseli w kierunku fazowym i częstotliwościowym. Prawidłowa odpowiedź – zmniejszenie FoV i jednoczesne zwiększenie matrycy – oznacza, że pojedynczy piksel reprezentuje mniejszy fragment tkanki. Innymi słowy, voxel ma mniejsze wymiary w płaszczyźnie obrazowania, więc lepiej widzimy drobne szczegóły anatomiczne, np. nerwy, drobne ogniska demielinizacji czy małe zmiany guzowate. Technicznie patrząc, rozdzielczość przestrzenną w MR opisuje się jako FoV / liczba elementów matrycy. Im mniejszy ten iloraz, tym wyższa rozdzielczość. Standardem w dobrych pracowniach jest świadome dobieranie FoV do badanego obszaru: np. dla badania przysadki czy oczodołów stosuje się małe FoV i wysoką matrycę (np. 256×256 lub 320×320), żeby dokładnie ocenić drobne struktury. Dla kręgosłupa lędźwiowego czy jamy brzusznej FoV jest większe, ale jeśli zależy nam na szczegółach (np. w onkologii), także podnosi się matrycę, akceptując dłuższy czas skanowania lub niższy SNR. Z mojego doświadczenia technicznego wynika, że w praktyce często trzeba szukać kompromisu między rozdzielczością, czasem badania a stosunkiem sygnału do szumu (SNR). Zmniejszenie FoV i zwiększenie matrycy poprawia rozdzielczość, ale może pogarszać SNR i wydłużać czas. Dlatego w dobrych praktykach pracowni MR zawsze dopasowuje się te parametry do konkretnego wskazania klinicznego, zamiast używać jednego „uniwersalnego” protokołu. Mimo tego kompromisu, zasada fizyczna pozostaje jasna: małe FoV + duża matryca = wysoka rozdzielczość przestrzenna.
Wszystkie niepoprawne odpowiedzi wynikają z jednego, bardzo typowego nieporozumienia: mylenia „dużego obrazu” z „dokładnym obrazem”. W MR nie chodzi o to, żeby zobaczyć jak największy obszar ciała, tylko żeby na jednostkę długości przypadało jak najwięcej pikseli. Rozdzielczość przestrzenna to w uproszczeniu rozmiar pojedynczego piksela, czyli FoV podzielone przez liczbę elementów matrycy. Jeśli zwiększamy FoV przy tej samej lub mniejszej matrycy, to każdy piksel obejmuje większy fragment tkanki. Obraz może wyglądać „większy” na monitorze, ale szczegóły anatomiczne są bardziej rozmyte, krawędzie struktur mniej ostre, a małe zmiany patologiczne mogą się zlać z tłem. To jest klasyczny błąd myślowy: skoro coś jest większe, to wydaje się bardziej widoczne, ale w diagnostyce obrazowej liczy się gęstość informacji, a nie sama powierzchnia. Z drugiej strony samo zmniejszenie matrycy przy dowolnym FoV zawsze obniża rozdzielczość, bo redukujemy liczbę linii w k-space i upraszczamy obraz. To czasem się robi celowo, żeby skrócić czas badania, ale kosztem szczegółowości. W odpowiedziach błędnych pojawia się też założenie, że wystarczy manipulować jednym parametrem. W praktyce technicznej MR zawsze patrzymy na kombinację FoV i matrycy, bo dopiero ich wspólna zmiana decyduje o rozmiarze voxela. Dobre praktyki w pracowniach MR mówią jasno: jeśli celem jest wysoka rozdzielczość przestrzenna (np. w badaniu stawów, przysadki, nerwów czaszkowych), trzeba zmniejszyć FoV do badanego obszaru i jednocześnie zastosować możliwie dużą matrycę, akceptując ewentualnie dłuższy czas skanowania lub korzystając z technik przyspieszających (parallel imaging, kompresja SENSE/GRAPPA). Odpowiedzi sugerujące zwiększanie FoV lub zmniejszanie matrycy idą dokładnie w przeciwną stronę: prowadzą do większych voxelów, gorszej ostrości i mniejszej wykrywalności drobnych zmian, co w praktyce klinicznej może po prostu obniżyć wartość diagnostyczną badania.