Prawidłowo wskazano cyklotron jako źródło promieniowania protonowego w radioterapii. W nowoczesnej terapii protonowej wiązka protonów musi być rozpędzona do bardzo wysokich energii, rzędu 70–250 MeV, tak aby miała odpowiedni zasięg w tkankach pacjenta. Do takiego przyspieszania świetnie nadaje się właśnie cyklotron, czyli akcelerator cykliczny, w którym protony poruszają się po spiralnej trajektorii w silnym polu magnetycznym i są wielokrotnie przyspieszane przez zmienne pole elektryczne. Na wyjściu z cyklotronu otrzymujemy stabilną, praktycznie ciągłą wiązkę protonów o zadanej energii. Dopiero później ta wiązka jest kształtowana przez systemy optyki wiązki, skanery, kolimatory i modulatory zasięgu, żeby precyzyjnie dopasować rozkład dawki do guza. W praktyce klinicznej cyklotron jest sercem całego ośrodka protonoterapii – zwykle znajduje się w osobnym, silnie osłoniętym bunkrze, a do stanowisk terapeutycznych wiązka jest doprowadzana systemem tuneli próżniowych i magnesów odchylających. Dzięki efektowi piku Bragga protony oddają większość energii na końcu swojego toru, co pozwala oszczędzać zdrowe tkanki za guzem; to jedna z głównych zalet protonoterapii w porównaniu z klasyczną fotonową radioterapią z przyspieszacza liniowego. Moim zdaniem warto pamiętać, że inne urządzenia, które często widzi się na oddziale radioterapii, jak linak czy cyberknife, pracują zupełnie inaczej – generują głównie promieniowanie fotonowe (X), a nie wiązkę protonów. W standardach międzynarodowych (np. zalecenia ICRU, IAEA) zawsze podkreśla się, że dla wiązek protonowych stosuje się wyspecjalizowane akceleratory, w tym właśnie cyklotrony lub synchrotrony, a nie klasyczne bomby kobaltowe.
W tym pytaniu łatwo pomylić różne źródła promieniowania stosowane w radioterapii, bo na pierwszy rzut oka wszystkie wydają się „maszynami do naświetlania”. Kluczowe jest jednak rozróżnienie, jakie cząstki lub fotony generuje dane urządzenie i na jakiej zasadzie pracuje. Radioterapia protonowa to terapia z użyciem ciężkich naładowanych cząstek – protonów – które wymagają specjalnego akceleratora cząstek. Taki akcelerator musi nadać protonom energię pozwalającą dotrzeć na wymaganą głębokość w ciele pacjenta i wytworzyć tam pik Bragga, czyli charakterystyczne maksimum dawki. Tym zajmują się cyklotrony lub synchrotrony, a nie typowe maszyny z klasycznej radioterapii fotonowej. Częsty błąd polega na wrzuceniu do jednego worka wszystkich zaawansowanych technologicznie aparatów, takich jak cyberknife. Cyberknife brzmi bardzo nowocześnie i kojarzy się z precyzją, ale fizycznie jest to niewielki przyspieszacz liniowy generujący wysokoenergetyczne promieniowanie X, zamontowany na robocie. To dalej terapia fotonowa, tylko z bardzo zaawansowanym systemem pozycjonowania i planowania, a nie protonoterapia. Podobnie bomba kobaltowa, historycznie bardzo ważna w teleterapii, wykorzystuje promieniowanie gamma emitowane przez izotop kobaltu-60. Jest to promieniowanie fotonowe o stałej energii, bez możliwości modulacji energii wiązki tak jak w akceleratorach cząstek. Z tego powodu bomba kobaltowa absolutnie nie jest źródłem protonów. Przyspieszacz liniowy również bywa wskazywany z przyzwyczajenia, bo to podstawowe urządzenie na większości oddziałów radioterapii. Jednak klasyczny linak medyczny przyspiesza elektrony w linii prostej i wytwarza promieniowanie X w głowicy terapeutycznej. Nie ma tam toru dla protonów ani odpowiedniej konstrukcji optyki wiązki protonowej. To jest typowy przykład błędu myślowego: „skoro to przyspieszacz, to na pewno też protony”. W praktyce klinicznej protonoterapii używa się wyspecjalizowanych akceleratorów hadronowych (cyklotronów, synchrotronów), a nie standardowych linaków czy bomb kobaltowych. Dlatego tylko cyklotron odpowiada wymaganiom pytania jako źródło wiązki protonowej stosowanej w radioterapii.