Zawód: Technik elektroradiolog
Kategorie: Diagnostyka obrazowa Ochrona radiologiczna Fizyka medyczna
Prawidłowe rozumowanie opiera się na bardzo podstawowej zależności fizycznej: im wyższe napięcie na lampie rentgenowskiej (kV), tym elektrony są silniej przyspieszane, a więc zderzając się z anodą oddają więcej energii. Ta większa energia kinetyczna elektronów przekłada się na wyższą energię fotonów promieniowania X. A ponieważ długość fali jest odwrotnie proporcjonalna do energii (λ ~ 1/E), wyższa energia oznacza krótszą długość fali. Czyli: wyższe kV → krótsza fala. Krótsza fala i wyższa energia fotonów powodują większą przenikliwość promieniowania X. W praktyce oznacza to, że promieniowanie o wyższym kV łatwiej przechodzi przez grubsze lub gęstsze struktury, np. miednicę, kręgosłup lędźwiowy czy klatkę piersiową u pacjentów o większej masie ciała. W pracowni RTG dobór napięcia jest jednym z kluczowych parametrów ekspozycji. Standardy i dobre praktyki mówią jasno: dla struktur kostnych grubych i gęstych stosuje się wyższe kV, właśnie po to, żeby promieniowanie było bardziej przenikliwe i nie zatrzymywało się w tkankach powierzchownych. Z mojego doświadczenia, przy badaniu klatki piersiowej typowo używa się wysokich napięć (np. 110–125 kV), żeby wiązka przeszła przez cały przekrój klatki i dobrze uwidoczniła serce, płuca i kręgosłup, przy rozsądnej dawce. Przy niższym kV obraz byłby zbyt kontrastowy, mocno „twardy” dla kości, ale tkanki miękkie mogłyby być niedostatecznie uwidocznione. Warto też pamiętać, że zwiększenie kV zmienia charakter wiązki: rośnie udział efektu Comptona, co wpływa na kontrast obrazu (kontrast spada), ale poprawia się przenikliwość. Dlatego w praktyce technik zawsze musi balansować między kV a mAs, żeby uzyskać właściwą jakość obrazu przy jak najniższej dawce, zgodnie z zasadą ALARA. Zwiększenie napięcia to więc nie tylko „mocniejszy” promień, ale konkretnie: krótsza długość fali i większa przenikliwość promieniowania X, co jest dokładnie opisane w poprawnej odpowiedzi.