Zawód: Technik elektroradiolog
Kategorie: Diagnostyka obrazowa Ochrona radiologiczna Fizyka medyczna
Prawidłowo – zwiększenie napięcia na lampie rentgenowskiej skraca długość fali promieniowania X i jednocześnie zwiększa jego przenikliwość. Wynika to bezpośrednio z fizyki zjawiska: wyższe napięcie anodowe (kV) nadaje elektronom większą energię kinetyczną. Te szybsze elektrony uderzają w anodę i wytwarzają fotony promieniowania X o wyższej energii. A im wyższa energia fotonu, tym krótsza długość fali (E = h·c/λ) i większa zdolność przenikania przez tkanki pacjenta czy materiały osłonowe. W praktyce radiologicznej oznacza to, że podnosząc kV, uzyskujemy bardziej „twarde” promieniowanie, które lepiej przechodzi przez gęste struktury, np. kości miednicy czy klatkę piersiową u pacjentów o większej masie ciała. Moim zdaniem kluczowe jest kojarzenie: kV = jakość promieniowania (energia, przenikliwość), a mAs = ilość promieniowania (liczba fotonów). W nowoczesnych aparatach RTG standardy pracy i dobre praktyki (np. wytyczne EFRS, europejskie zalecenia dla ekspozycji) mówią jasno: dobiera się możliwie wysokie kV i możliwie niskie mAs, aby zmniejszyć dawkę dla pacjenta, ale jednocześnie zachować odpowiedni kontrast obrazu. Dla zdjęć klatki piersiowej stosuje się zwykle wyższe napięcia (np. 100–125 kV), właśnie po to, żeby promieniowanie miało wysoką przenikliwość i równomiernie „przeszło” przez cały przekrój klatki. Przy badaniach kończyn, gdzie struktury są cieńsze, używa się niższego napięcia, bo nie potrzebujemy aż tak twardego widma. Warto też pamiętać, że zwiększenie kV zmniejsza kontrast tkankowy obrazu (bo wszystko jest bardziej przepuszczalne), ale za to redukuje pochłoniętą dawkę w skórze. W dobrze prowadzonym pracowni RTG technik świadomie balansuje kV i mAs, aby osiągnąć kompromis między jakością diagnostyczną a ochroną radiologiczną. Z mojego doświadczenia to jedna z podstawowych umiejętności w diagnostyce obrazowej – rozumieć, że zmiana napięcia to nie tylko „jaśniej/ciemniej”, ale przede wszystkim zmiana energii i przenikliwości promieniowania.