Poprawnie – stojan tego silnika ma 3 pary biegunów magnetycznych. Wynika to bezpośrednio z zależności między prędkością synchroniczną a liczbą par biegunów. Dla silników synchronicznych i asynchronicznych obowiązuje wzór: n_s = 60·f / p, gdzie n_s to prędkość synchroniczna w obr./min, f – częstotliwość zasilania w Hz, a p – liczba par biegunów magnetycznych. Podstawiając dane z zadania: n_s = 1000 obr./min, f = 50 Hz, mamy 1000 = 60·50 / p, czyli 1000 = 3000 / p, stąd p = 3. To daje 3 pary biegunów, czyli łącznie 6 biegunów magnetycznych (3 północne i 3 południowe) rozmieszczone w stojanie. W praktyce ta zależność jest bardzo ważna przy doborze silników do napędów, np. w wentylatorach, pompach, przenośnikach czy mieszadłach. Jeżeli potrzebna jest niższa prędkość obrotowa bez użycia falownika, wybiera się silnik o większej liczbie par biegunów, np. 4P (2 pary), 6P (3 pary), 8P (4 pary) itd. Moim zdaniem każdy technik elektryk powinien ten wzór umieć przekształcić w obie strony, bo na budowie, w utrzymaniu ruchu czy przy modernizacji instalacji napędowych często trzeba „z marszu” ocenić, czy dany silnik przy 50 Hz będzie miał ok. 3000, 1500, 1000 czy 750 obr./min. W silniku pierścieniowym synchronizowanym, mimo specyficznej konstrukcji wirnika, prędkość synchroniczna nadal zależy tylko od częstotliwości i liczby par biegunów stojana. Uzwojenia wirnika i sposób rozruchu (np. przez rezystancję rozruchową) nie zmieniają tej podstawowej zależności wynikającej z pola wirującego. W praktyce przy przeglądach i diagnostyce dobrze jest porównać tabliczkę znamionową z obliczeniami z tego wzoru, bo od razu widać, czy ktoś np. nie podał błędnych danych lub czy silnik nie jest przystosowany np. do 60 Hz.
W tym zadaniu kluczowe jest zrozumienie zależności między prędkością synchroniczną a liczbą par biegunów, a nie zgadywanie „na oko”, czy silnik ma mało czy dużo biegunów. W silnikach prądu przemiennego (zarówno asynchronicznych klatkowych, pierścieniowych, jak i synchronicznych) obowiązuje ta sama podstawowa relacja: n_s = 60·f / p, gdzie n_s to prędkość synchroniczna, f – częstotliwość sieci, a p – liczba par biegunów magnetycznych w stojanie. Typowy błąd polega na tym, że ktoś patrzy: 1000 obr./min – no to pewnie 2 pary biegunów, bo kojarzy, że 50 Hz i jakieś 1500 obr./min to coś standardowego. I tu zaczyna się problem. Przy 50 Hz i 2 parach biegunów (czyli 4 biegunach) prędkość synchroniczna wynosi 1500 obr./min, nie 1000. Takie silniki spotyka się bardzo często, więc wielu osobom to się automatycznie narzuca jako odpowiedź, ale matematyka jest tutaj bezlitosna. Gdyby silnik miał tylko 1 parę biegunów, to prędkość synchroniczna byłaby aż 3000 obr./min (60·50/1), co kompletnie nie pasuje do podanych 1000 obr./min. Z kolei 4 pary biegunów przy 50 Hz dają 750 obr./min (60·50/4), a więc wyraźnie mniej niż w zadaniu. Widać więc, że ani 1, ani 2, ani 4 pary nie pozwalają uzyskać dokładnie 1000 obr./min. Dopiero dla 3 par biegunów wychodzi n_s = 60·50/3 = 1000 obr./min. Częstym błędem myślowym jest też mylenie liczby biegunów z liczbą par biegunów oraz ignorowanie faktu, że w silniku pierścieniowym, mimo innej konstrukcji wirnika, prędkość synchroniczna nadal zależy wyłącznie od częstotliwości i liczby par biegunów stojana, a nie od oporników rozruchowych czy sposobu sterowania. W praktyce, przy doborze napędów do maszyn technologicznych, instalator lub serwisant powinien zawsze umieć szybko z tego wzoru wyliczyć, jaka liczba par biegunów odpowiada danej prędkości przy 50 Hz, zamiast polegać na intuicji typu „to pewnie silnik 2-biegunowy, bo jest szybki”. Taka „intuicja bez wzoru” właśnie najczęściej prowadzi do błędnych odpowiedzi w tego typu zadaniach.