W tym zadaniu mamy klasyczne połączenie w gwiazdę trzech jednakowych odbiorników rezystancyjnych. Każda grzałka ma rezystancję 100 Ω i jest włączona między fazę a punkt gwiazdowy, czyli pracuje na napięciu fazowym sieci. W sieci 230/400 V napięcie 230 V to napięcie fazowe (między fazą a przewodem neutralnym lub punktem gwiazdy), a 400 V to napięcie międzyfazowe. Dlatego do obliczeń bierzemy 230 V, a nie 400 V. Natężenie prądu fazowego liczymy z prostego wzoru dla odbiornika rezystancyjnego: I = U / R. Podstawiamy: I_f = 230 V / 100 Ω = 2,3 A. Ponieważ odbiornik jest symetryczny i połączony w gwiazdę, prąd fazowy jest równy prądowi przewodowemu, więc każda faza sieci obciążona jest prądem 2,3 A. W praktyce takie obliczenia stosuje się np. przy doborze przekrojów przewodów zasilających nagrzewnice trójfazowe, bo trzeba znać prąd płynący w żyłach fazowych, żeby dobrać właściwy przekrój wg PN-HD 60364 i sprawdzić obciążalność długotrwałą. Podobnie przy doborze zabezpieczeń nadprądowych – trzeba dobrać wyłącznik o prądzie znamionowym nieco większym niż prąd obciążenia, np. 3×B6 A byłby w tym przypadku zupełnie wystarczający. Z mojego doświadczenia warto nawykowo rozróżniać: przy połączeniu w gwiazdę liczymy prąd z napięcia fazowego, a przy połączeniu w trójkąt – z napięcia międzyfazowego. To później bardzo ułatwia życie przy analizie silników, grzałek czy innych odbiorników trójfazowych.
W tego typu zadaniu największy problem zwykle wynika z pomylenia napięcia fazowego z liniowym oraz z nieprawidłowego kojarzenia zależności między prądem a sposobem połączenia odbiornika. Odbiornik jest połączony w gwiazdę, każda grzałka 100 Ω wisi między fazą a punktem gwiazdowym, czyli pracuje na napięciu 230 V, a nie 400 V. Jeśli ktoś wziął napięcie 400 V do obliczeń, to automatycznie wychodzi zawyżony prąd, bo z prawa Ohma I = U / R. Dla 400 V i 100 Ω wyszłoby 4 A, co kusi, bo jest w odpowiedziach, ale jest to typowy błąd: użycie napięcia międzyfazowego w sytuacji, gdy element jest zasilany napięciem fazowym. W układzie gwiazdy napięcie na każdej fazie (na każdym odbiorniku) jest niższe o pierwiastek z trzech od napięcia międzyfazowego. Drugi typowy błąd to mieszanie zależności prądowych z układu trójkąta z układem gwiazdy. W trójkącie prąd przewodowy jest większy od prądu fazowego o czynnik √3, natomiast w gwieździe prąd fazowy jest równy przewodowemu. Jeśli ktoś próbował tu coś mnożyć lub dzielić przez √3 przy prądzie, to też prowadzi do wyników typu 1,3 A czy 6,9 A, które po prostu nie mają fizycznego sensu przy zadanych danych. Warto pamiętać prostą zasadę: w gwieździe liczymy prąd z napięcia 230 V dla sieci 230/400 V, a w trójkącie – z 400 V. Dopiero po poprawnym ustaleniu napięcia dla pojedynczej fazy można mówić o dalszych przeliczeniach, np. o mocy całkowitej P = 3·U_f·I_f przy odbiorniku rezystancyjnym. Moim zdaniem dobrze jest przy każdym takim zadaniu najpierw narysować sobie prosty schemat gwiazdy i podpisać na nim napięcie fazowe oraz międzyfazowe, wtedy od razu widać, że użycie 400 V do pojedynczej grzałki jest błędem. To jest też bardzo praktyczne przy rzeczywistych instalacjach – błędne założenie napięcia skutkuje złym doborem zabezpieczeń i przekrojów przewodów, co jest niezgodne z PN-HD 60364 i po prostu niebezpieczne dla instalacji.