Poprawnie – na przedstawionym wykresie napięcie zmienia się między poziomem bliskim 0 V a poziomem 5 V, więc wartość międzyszczytowa wynosi 5,0 V. Wartość międzyszczytowa (często oznaczana jako Upp, Uppk lub Upk-pk) to po prostu różnica między wartością maksymalną a minimalną sygnału: Upp = Umax − Umin. Na rysunku widać, że dolny poziom przebiegu praktycznie dotyka osi 0 V, a górny poziom jest na wysokości 5 V, więc: Upp = 5 V − 0 V = 5 V. W praktyce pomiarowej, szczególnie przy przebiegach prostokątnych, trójkątnych czy dowolnych niestandardowych, wartość międzyszczytowa jest jednym z podstawowych parametrów opisu sygnału, obok wartości skutecznej i wartości średniej. Oscyloskopy cyfrowe mają nawet dedykowaną funkcję pomiaru Vpp, którą w serwisie i w laboratorium stosuje się praktycznie non stop. Moim zdaniem dobrze jest odruchowo patrzeć na przebieg i automatycznie oceniać, czy podane napięcie jest amplitudą, wartością międzyszczytową, czy może wartością skuteczną. W układach z elektroniką cyfrową, np. z mikrokontrolerami, ten konkretny poziom 5 V jest typowy dla zasilania logiki TTL/CMOS, więc taki prostokąt 0–5 V to typowy sygnał sterujący. Z kolei przy badaniu zasilaczy impulsowych albo generatorów funkcji na oscyloskopie projektant często sprawdza właśnie, czy napięcie międzyszczytowe zgadza się z założeniami katalogowymi i czy nie dochodzi do przesterowania wejść urządzeń. Warto też pamiętać, że dla przebiegów symetrycznych sinusoidalnych wartości międzyszczytowej nie mylimy z amplitudą: dla sinusa Upp = 2·Um, a tutaj prostokąt jest niesymetryczny względem zera, więc sprawa jest prostsza – liczymy zwykłą różnicę między górą i dołem.
Na wykresie mamy prostokątny przebieg napięcia, który zmienia się pomiędzy dwoma wyraźnie ustalonymi poziomami: dolnym bliskim 0 V i górnym na wysokości 5 V. Wartość międzyszczytowa, oznaczana jako napięcie szczyt–szczyt (Upp, Vpp), jest z definicji różnicą między wartością maksymalną a minimalną sygnału w danym przedziale czasu. Nie ma tu żadnego uśredniania ani dzielenia przez dwa – po prostu bierzemy najwyższy i najniższy punkt przebiegu i odejmujemy: Upp = Umax − Umin. Typowy błąd przy takich zadaniach polega na myleniu wartości międzyszczytowej z amplitudą. Amplituda to odległość od poziomu odniesienia (zwykle zera lub wartości średniej) do szczytu przebiegu. Dla sinusa symetrycznego wokół zera często spotyka się zależność, że napięcie międzyszczytowe jest równe dwa razy amplituda, i część osób automatycznie „dzieli przez dwa”, gdy widzi jakieś 5 V. W tym zadaniu prowadzi to do odpowiedzi 2,5 V, która wygląda pozornie rozsądnie, ale dotyczy amplitudy, a nie wartości międzyszczytowej. Inny typowy skrót myślowy to traktowanie pojedynczej liczby podanej przy przebiegu prostokątnym jako wartości skutecznej, a nie jako poziomu logicznego. Wtedy ktoś może próbować „korygować” tę wartość i dochodzić np. do 1,5 V, mieszając pojęcia skutecznej, średniej i międzyszczytowej. Odpowiedź 6,0 V z kolei wynika zwykle z błędnego odczytu skali na osi pionowej – gdy ktoś nie zwróci uwagi, że podziałka jest co 1 V, potrafi „doszacować” górę na więcej niż 5 V. W praktyce pomiarowej, zgodnie z dobrymi praktykami i tym, co zalecają instrukcje obsługi oscyloskopów, zawsze najpierw sprawdza się skalę pionową (liczbę woltów na działkę), a dopiero potem interpretuje wartości. Jeżeli sygnał jest niesymetryczny względem zera, jak tutaj, nie ma sensu przeliczać niczego na ± wartości – po prostu odczytujemy minimum i maksimum z wykresu lub z funkcji automatycznego pomiaru Vpp. Z mojego doświadczenia wynika, że opanowanie różnicy między Usk, Um, Uśr i Upp bardzo ułatwia życie przy analizie zasilaczy, przetwornic czy sygnałów z generatora – unikamy wtedy takich pomyłek i lepiej rozumiemy, jak układ zachowa się w rzeczywistej instalacji.