Poprawnie wyznaczyłeś wartość rezystancji izolacji w temperaturze 20 °C, korzystając z przelicznika z tabeli. Tutaj kluczowe było zrozumienie, jak temperatury wpływają na właściwości elektryczne izolacji – im wyższa temperatura, tym zwykle rezystancja izolacji maleje, dlatego pomiary zawsze odnosi się do standardowej temperatury 20 °C. Wzór R₂₀ = K₂₀·Rₜ to podstawa w branżowej praktyce, bo pozwala porównywać wyniki niezależnie od warunków pomiaru. W tym zadaniu dla temperatury 17 °C współczynnik K₂₀ wynosi 0,90 (z tabeli). Mierzona rezystancja izolacji to 7,3 MΩ. Wystarczyło więc podzielić 7,3 przez 0,90 i wychodzi dokładnie 6,57 MΩ. Często się o tym zapomina przy serwisowaniu maszyn, a to błąd, bo niewłaściwie przeliczona rezystancja może prowadzić do złej interpretacji stanu izolacji i niepotrzebnych napraw. W praktyce, szczególnie w dużych zakładach przemysłowych, normą jest przeliczanie wyników pomiarów na 20 °C, żeby spełnić wymagania dokumentacji technicznej i standardów np. PN-EN 60034-1. Warto wiedzieć, że różnice nawet kilku stopni mogą mocno zamieszać w ocenie, zwłaszcza przy starych silnikach. Moim zdaniem to takie zadanie, które uczy nie tylko liczyć, ale i rozumieć, co się za tym kryje – a to przy diagnozowaniu awarii silnika bezcenne.
W tego typu zadaniach kluczowe jest właściwe zastosowanie przelicznika temperatury do rezystancji izolacji, bo izolacja silników elektrycznych silnie reaguje na zmiany temperatury. W praktyce często zdarza się, że ktoś popełnia błąd, wybierając nie ten współczynnik K₂₀ z tabeli, co trzeba albo myli etapy przeliczania. Przykładowo, jeśli ktoś wybierze współczynnik odpowiadający nie tej temperaturze, w której był wykonany pomiar – np. zamiast 0,90 (dla 17 °C) wybierze 1,00 (dla 20 °C) czy inny, cały wynik się rozjedzie. Równie często spotykam się z zamianą mnożenia na dzielenie, a przy tym wzorze trzeba pamiętać, że to R₂₀ = Rₜ/K₂₀, czyli dzielimy wartość zmierzoną przez współczynnik. To nie jest oczywiste, bo niektóre osoby automatycznie mnożą przez K₂₀, traktując go jak typowy przelicznik korekcyjny – a tu jest odwrotnie, bo współczynnik mówi, jak bardzo pomierzona rezystancja w danej temperaturze odbiega od tej w 20 °C. Jeśli ktoś tego nie zrozumie, uzyska wynik zbyt wysoki lub zbyt niski. Dodatkowo, niektórzy mogą zaokrąglać współczynnik albo wynik bez dokładności, co przy tak precyzyjnych pomiarach prowadzi do błędnych interpretacji technicznych. Takie niedopatrzenia w praktyce serwisowej mogą spowodować, że uznamy sprawny silnik za uszkodzony, lub odwrotnie – przeoczymy pogorszenie stanu izolacji. To pokazuje, jak ważne jest rzetelne stosowanie wzoru i korzystanie z aktualnych tabel przeliczeniowych zgodnych z normami branżowymi, jak PN-EN 60034-1. Moim zdaniem, zanim przeliczymy cokolwiek, zawsze warto dwa razy sprawdzić, czy na pewno korzystamy z właściwych danych i dobrze rozumiemy cel przeliczenia – bo w praktyce to procentuje bezpieczeństwem i niezawodnością pracy urządzeń.