Poprawnie – na schemacie widać klasyczny trójfazowy mostek prostowniczy zbudowany z sześciu diod. Taki układ służy do zamiany prądu przemiennego (AC) na prąd jednokierunkowy, czyli wyprostowany (DC). Diody przewodzą tylko w jedną stronę, dlatego w każdym momencie przewodzą te, które akurat „wpuszczają” dodatnie półokresy na zacisk dodatni, a ujemne kierują na zacisk ujemny. Dzięki odpowiedniemu połączeniu sześciu diod z trzema fazami uzyskujemy na wyjściu stosunkowo mało tętniejące napięcie stałe. W praktyce taki prostownik znajdziesz np. w zasilaczach do napędów silników prądu stałego, w spawarkach inwertorowych, w prostownikach do ładowania akumulatorów trakcyjnych, w układach DC-link w przekształtnikach częstotliwości oraz w wielu zasilaczach przemysłowych. Z mojego doświadczenia wynika, że rozpoznawanie mostka prostowniczego na schematach to absolutna podstawa w technikum elektrycznym – później dochodzą tylko bardziej rozbudowane wersje: sterowane (z tyrystorami), z filtracją LC, z ograniczeniem prądu rozruchowego itd. W normach i dobrych praktykach projektowych zwraca się uwagę m.in. na prawidłowy dobór diod pod kątem prądu znamionowego, napięcia wstecznego oraz odprowadzania ciepła (radiatory, odpowiednia wentylacja). Ważne jest też poprawne prowadzenie przewodów fazowych i przewodu ochronnego zgodnie z PN-HD 60364, a także dobór zabezpieczeń nadprądowych po stronie AC i DC. W eksploatacji takich prostowników trzeba pamiętać o sprawdzeniu polaryzacji na wyjściu, bo odwrotne podłączenie obciążenia (np. akumulatora) może skończyć się uszkodzeniem diod. Ten typ układu nie zmienia częstotliwości ani nie steruje mocą w sensie regulacji, tylko właśnie prostuje – i to jest jego główna rola.
Na schemacie pokazano trójfazowy mostek prostowniczy z sześciu diod półprzewodnikowych. Typowym błędem przy takim rysunku jest mylenie funkcji „prostowania” z regulacją mocy albo częstotliwości. Diody w tym układzie działają jak zawory jednokierunkowe: przepuszczają prąd tylko w jednym kierunku i w ten sposób z przebiegów sinusoidalnych trzech faz wycinają odpowiednie fragmenty, które na wyjściu składają się na napięcie jednokierunkowe o stosunkowo małych tętnieniach. To nie jest jednak ani regulator mocy DC, ani falownik, ani przekształtnik częstotliwości. Sterowanie mocą prądu stałego wymaga dodatkowych elementów, zwykle tranzystorów IGBT, MOSFET albo tyrystorów z układem sterowania, które modulują czas przewodzenia (np. PWM). Sam prostownik diodowy pracuje „pasywnie” – przewodzi zawsze, gdy dioda jest spolaryzowana w kierunku przewodzenia. Dlatego nie ma możliwości płynnej regulacji napięcia czy mocy, jedynie prostuje to, co dostaje z sieci lub transformatora. Z kolei zamiana prądu stałego na przemienny to zadanie falownika. Tam kierunek przepływu energii jest odwrotny: z DC na AC, a do tego dochodzi pełna elektronika sterująca, która kształtuje przebieg napięcia wyjściowego, jego częstotliwość i często też amplitudę. Na schematach falowników nie zobaczysz prostego układu sześciu diod po stronie AC, tylko zazwyczaj mostki tranzystorowe po stronie DC. Regulacja częstotliwości prądu przemiennego też nie zachodzi w prostowniku diodowym. Frequencję AC po stronie sieci narzuca system elektroenergetyczny (50 Hz) i prostownik jej nie zmienia, on tylko „skleja” półokresy w przebieg jednokierunkowy. Typowym błędem myślowym jest założenie, że skoro układ wygląda na dość złożony i jest trójfazowy, to na pewno coś „reguluje” albo „przekształca częstotliwość”. W rzeczywistości jego rola jest dużo prostsza: zamienić trójfazowe napięcie przemienne na napięcie jednokierunkowe, które dalej może być filtrowane, magazynowane w kondensatorach i dopiero potem użyte w bardziej zaawansowanych przekształtnikach. W dobrych praktykach projektowych traktuje się taki prostownik jako pierwszy, bardzo podstawowy etap toru zasilania.