Poprawnie wskazana funkcja uzwojenia kompensacyjnego jest bardzo istotna z punktu widzenia prawidłowej pracy silnika prądu stałego obciążonego. Uzwojenie kompensacyjne jest umieszczone w żłobkach bieguna głównego, tuż pod jego nabiegunnikiem, i jest połączone szeregowo z twornikiem. Dzięki temu prąd płynący w uzwojeniu kompensacyjnym jest proporcjonalny do prądu twornika, a więc do obciążenia maszyny. Jego zadaniem jest wytworzenie takiego strumienia magnetycznego, który w strefie biegunów głównych przeciwstawia się strumieniowi od twornika (czyli zjawisku reakcji twornika). W praktyce chodzi o to, żeby ograniczyć odkształcenie głównego pola magnetycznego, przesuwanie się strefy komutacji i ryzyko iskrzenia na szczotkach przy zmianach obciążenia. Dzięki uzwojeniu kompensacyjnemu silnik lepiej znosi duże prądy obciążenia, ma stabilniejszą komutację i może pracować przy wyższych gęstościach prądu bez nadmiernego zużycia komutatora. Moim zdaniem, w zastosowaniach przemysłowych, gdzie silniki prądu stałego są często narażone na gwałtowne zmiany momentu (np. walcarki, dźwigi, napędy trakcyjne starszego typu), uzwojenie kompensacyjne to wręcz standard dobrej praktyki konstrukcyjnej. W normach i literaturze dotyczącej maszyn elektrycznych podkreśla się, że dla maszyn dużej mocy i dużych prądów reakcja twornika musi być ograniczana nie tylko biegunami komutacyjnymi, ale właśnie także uzwojeniem kompensacyjnym w strefie biegunów głównych. W efekcie otrzymujemy bardziej „posłuszny” silnik: napięcie komutacji mniej zależy od obciążenia, charakterystyki mechaniczne są stabilniejsze, a sprawność eksploatacyjna wyższa, bo nie tracimy energii na nadmierne nagrzewanie komutatora i szczotek.
W silnikach prądu stałego bardzo łatwo pomylić role poszczególnych rodzajów uzwojeń, bo wszystko kręci się wokół pola magnetycznego i momentu. Warto więc to sobie dobrze poukładać. Uzwojenie kompensacyjne nie służy do „pompowania” momentu rozruchowego. Za duży moment przy rozruchu odpowiada głównie układ zasilania (np. rezystory rozruchowe, układy tyrystorowe), a także sposób wzbudzenia silnika, szczególnie w maszynach szeregowych. Samo uzwojenie kompensacyjne nie ma za zadania zwiększać momentu, tylko poprawiać warunki pracy pola magnetycznego pod biegunami głównymi. Często pojawia się też skojarzenie, że skoro mówimy o uzwojeniu, to może chodzić o zmniejszenie strat mocy czynnej w uzwojeniu stojana. W silniku prądu stałego klasycznego typu nie ma typowego „stojana” jak w maszynie asynchronicznej, tylko jarzmo z biegunami głównymi i pomocniczymi. Straty mocy w uzwojeniach wynikają głównie z ich rezystancji i prądu, a uzwojenie kompensacyjne wprowadza wręcz dodatkowe straty miedziowe, więc nie jest to element do poprawy sprawności w tym sensie. Kolejne mylące wyobrażenie dotyczy strefy szczotek. Ograniczaniem oddziaływania twornika w okolicy szczotek zajmują się przede wszystkim bieguny komutacyjne (bieguni pomocniczy), odpowiednio ukształtowane i zasilane tak, by w strefie komutacji pole było możliwie zbliżone do zera. Uzwojenie kompensacyjne pracuje natomiast w strefie biegunów głównych i tam „prostuje” rozkład strumienia, przeciwdziałając odkształceniu pola przez prąd twornika. Typowy błąd myślowy polega na wrzuceniu do jednego worka: biegunów komutacyjnych, uzwojenia kompensacyjnego i samego uzwojenia wzbudzenia, jakby wszystkie robiły to samo. W rzeczywistości jest podział ról: bieguny główne tworzą zasadnicze pole robocze, bieguny komutacyjne dbają o poprawną komutację w okolicy szczotek, a uzwojenie kompensacyjne ogranicza reakcję twornika właśnie w strefie biegunów głównych, stabilizując pole przy dużych obciążeniach. Dopiero takie spojrzenie pozwala zrozumieć, dlaczego prawidłowa odpowiedź dotyczy biegunów głównych, a nie rozruchu, strat czy bezpośrednio strefy szczotek.