Poprawnie – prądnica tachometryczna to klasyczny, bardzo często stosowany czujnik prędkości obrotowej w układach automatyki i napędów. Działa jak mała prądnica, która wytwarza napięcie proporcjonalne do prędkości obrotowej wału. Im szybciej się kręci, tym wyższe napięcie na jej zaciskach. Dzięki temu układ sterowania może w prosty sposób „odczytać” prędkość, mierząc napięcie wyjściowe, zwykle w zakresie kilku–kilkunastu woltów. W praktyce spotyka się prądnice tachometryczne prądu stałego (napięcie DC) oraz prądu przemiennego (AC), dobierane w zależności od rodzaju napędu i elektroniki pomiarowej. W nowocześniejszych instalacjach coraz częściej używa się enkoderów impulsowych, ale w wielu układach modernizowanych, w starszych obrabiarkach, suwnicach czy liniach technologicznych, prądnica tachometryczna dalej robi robotę, bo jest prosta, odporna i łatwa w diagnozowaniu. Moim zdaniem to bardzo dobre rozwiązanie edukacyjne – na jej przykładzie świetnie widać związek między wielkością mechaniczną (obr/min) a wielkością elektryczną (V). W dobrych praktykach projektowych ważne jest, żeby prądnicę tachometryczną montować solidnie współosiowo z wałem, zadbać o ekranowany przewód sygnałowy oraz właściwe uziemienie, żeby nie łapała zakłóceń. W układach regulacji prędkości (np. napędy DC, falowniki starszego typu, regulatory analogowe) sygnał z prądnicy tachometrycznej jest elementem sprzężenia zwrotnego – dzięki niemu regulator może porównać prędkość zadaną z rzeczywistą i odpowiednio korygować moment silnika. W dokumentacjach producentów napędów i według ogólnych zasad automatyki przemysłowej prądnica tachometryczna jest więc pełnoprawnym czujnikiem prędkości, a nie „zwykłą prądnicą”.
W tym zadaniu bardzo łatwo pomylić różne typy maszyn i urządzeń elektrycznych, bo wszystkie brzmią dość specjalistycznie, ale tylko jedna z nich jest typowym czujnikiem prędkości obrotowej. Klucz jest taki: czujnik prędkości musi dawać sygnał jednoznacznie zależny od prędkości wału, najlepiej w postaci napięcia, częstotliwości albo impulsów, które można łatwo przetworzyć w układzie pomiarowym lub sterującym. Silnik krokowy często budzi skojarzenie z precyzją i pozycjonowaniem, więc wielu osobom wydaje się, że może on „mierzyć” prędkość. W rzeczywistości silnik krokowy jest elementem wykonawczym, a nie pomiarowym. Pozwala bardzo dokładnie ustawić kąt obrotu wału poprzez zliczanie kroków, ale sam z siebie nie generuje sygnału informującego o aktualnej prędkości – wręcz przeciwnie, to układ sterowania narzuca mu częstotliwość kroków. W zastosowaniach, gdzie trzeba znać faktyczną prędkość lub pozycję, dokładamy do niego enkoder lub inny czujnik, bo sam krokowiec nie pełni funkcji tachometru. Kompensator kojarzy się z wyrównywaniem, korygowaniem, „kompensacją” czegoś, i to skojarzenie jest w sumie trafne, ale nie w kontekście pomiaru prędkości. W elektrotechnice kompensatory służą najczęściej do kompensacji mocy biernej, regulacji napięcia czy wyrównywania zaburzeń w sieci. Ich rolą jest poprawa parametrów pracy układu, a nie dostarczanie informacji pomiarowej o prędkości wału. To zupełnie inna bajka, bardziej związana z jakością energii elektrycznej niż z automatyką napędową. Selsyn natomiast to specyficzna maszyna elektryczna używana do zdalnego przekazywania położenia kątowego, np. w starych układach sterowania, na okrętach, w lotnictwie czy w aparaturze wojskowej. Dwa selsyny połączone odpowiednio przewodami tworzą parę nadajnik–odbiornik: kąt obrotu jednego jest odtwarzany przez drugi. Owszem, istnieje związek między położeniem, a pośrednio i prędkością, ale selsyn zasadniczo jest przetwornikiem położenia, nie klasycznym czujnikiem prędkości obrotowej. Typowy błąd myślowy w tym pytaniu polega na tym, że jeśli urządzenie coś „obraca” albo „mierzy kąt”, to od razu traktujemy je jako czujnik prędkości. Tymczasem w praktyce automatyki napędowej do bezpośredniego pomiaru prędkości stosuje się właśnie prądnice tachometryczne albo enkodery, a silniki krokowe, kompensatory i selsyny pełnią zupełnie inne role w układach elektrycznych i sterowania.