Prawidłowo – w silniku bocznikowym prądu stałego gwałtowny wzrost prędkości obrotowej przy stałym napięciu zasilania jest typowym objawem przerwania uzwojenia wzbudzenia. W takim silniku uzwojenie wzbudzenia (bocznikowe) jest połączone równolegle z twornikiem i zasilane tym samym napięciem. Strumień magnetyczny w szczelinie powietrznej jest wprost zależny od prądu płynącego w tym uzwojeniu. Jeżeli obwód wzbudzenia zostanie przerwany, prąd wzbudzenia spada praktycznie do zera, a więc zanika strumień główny maszyny. Z równania prędkości elektromaszynowej n ≈ U / (k·Φ) widać, że przy spadku strumienia Φ dąży ona do bardzo dużych wartości – stąd nagłe rozbieganie się silnika. W praktyce warsztatowej i przemysłowej jest to bardzo niebezpieczny stan, dlatego zgodnie z dobrymi praktykami projektuje się układy zabezpieczeń, które kontrolują ciągłość obwodu wzbudzenia i przy jego przerwaniu natychmiast odłączają zasilanie twornika. W wielu instrukcjach eksploatacji maszyn DC wyraźnie podkreśla się konieczność sprawdzenia rezystancji uzwojenia wzbudzenia przed pierwszym uruchomieniem, a także po naprawach. Moim zdaniem, jeśli ktoś poważnie myśli o pracy z maszynami prądu stałego, to skojarzenie: przerwa we wzbudzeniu = ryzyko rozbiegania, powinno być automatyczne. W nowoczesnych napędach DC stosuje się często dodatkowe czujniki prędkości oraz układy elektroniczne, które przy nienaturalnym wzroście obrotów wyłączają napęd, ale klasyczna, podręcznikowa przyczyna takiego zachowania to właśnie zanik wzbudzenia. Dlatego odpowiedź „uzwojenie wzbudzenia” idealnie opisuje mechanizm fizyczny stojący za takim objawem usterki.
Gwałtowny wzrost prędkości obrotowej silnika bocznikowego prądu stałego przy stałym napięciu zasilania prawie zawsze wiąże się z problemem w obwodzie wzbudzenia, a nie w pozostałych uzwojeniach. Wiele osób intuicyjnie szuka przyczyny w tworniku, bo „on się kręci”, albo w uzwojeniach pomocniczych, ale to jest właśnie ten typowy błąd myślowy: skupianie się na elemencie ruchomym zamiast na tym, co steruje strumieniem magnetycznym. Uzwojenie kompensacyjne ma za zadanie kompensować reakcję twornika, poprawiać komutację i charakterystykę momentu, szczególnie przy dużych obciążeniach. Jego uszkodzenie może powodować iskrzenie na komutatorze, przegrzewanie, spadek momentu czy niestabilną pracę przy obciążeniu, ale nie prowadzi samo z siebie do nagłego rozbiegania się silnika. Strumień główny w maszynie wzbudzanej bocznikowo jest wytwarzany przez uzwojenie wzbudzenia, a nie kompensacyjne, więc przerwa w kompensacyjnym nie powoduje zaniku tego strumienia. Uzwojenie komutacyjne (bieguny komutacyjne) odpowiada za poprawę komutacji, czyli za ograniczenie iskrzenia na szczotkach przy zmianie kierunku prądu w cewkach twornika. Jego przerwa znowu dałaby objawy w postaci silnego iskrzenia, możliwych uszkodzeń komutatora, ale prędkość obrotowa raczej by nie wzrosła, a często wręcz napęd pracowałby gorzej, mniej stabilnie, szczególnie pod obciążeniem. Natomiast uzwojenie twornika, wbrew pozorom, kiedy ulegnie przerwaniu, wcale nie powoduje przyspieszenia, tylko spadek momentu, drgania, czasem całkowite zatrzymanie. Brak ciągłości w tworniku to brak możliwości wytworzenia odpowiedniego momentu elektromagnetycznego. Silnik może szarpać, nie wystartować albo bardzo się grzać, ale nie ma fizycznych podstaw, żeby przy przerwie w tworniku nagle „wyskoczył” z obrotami. Klucz do zadania leży w równaniu prędkości: n zależy odwrotnie proporcjonalnie od strumienia Φ. Ten strumień ustala właśnie uzwojenie wzbudzenia. Gdy ono jest przerwane, strumień praktycznie zanika, napięcie zasilania pozostaje, więc prędkość dąży do bardzo wysokiej wartości. Stąd odpowiedzi wskazujące na uzwojenie kompensacyjne, komutacyjne czy twornika mijają się z fizyką działania maszyny. Z mojego doświadczenia warto zawsze zadać sobie pytanie: który obwód w tej maszynie decyduje o strumieniu głównym? Jeśli nie jest to ten, który typuję, to najpewniej odpowiedź jest błędna.