Przedstawiony symbol to klasyczny symbol diody Zenera: zwykły symbol diody prostowniczej (trójkąt lub strzałka zakończona pionową kreską) z charakterystycznym „złamaniem” lub dodatkowym zagięciem linii przy katodzie. W normowych schematach (np. wg PN-EN/IEC) to właśnie to załamanie kreski od strony katody odróżnia diodę Zenera od zwykłej diody półprzewodnikowej. Oznaczenia A i K pokazują odpowiednio anodę i katodę. W praktyce, w układach elektronicznych dioda Zenera pracuje w kierunku zaporowym, czyli jest spolaryzowana odwrotnie. Po przekroczeniu napięcia Zenera (oznaczanego często Uz) dioda zaczyna przewodzić, stabilizując napięcie na dość stałym poziomie. Dlatego podstawowe zastosowanie diody Zenera to stabilizacja i ograniczanie napięcia, na przykład w prostych zasilaczach liniowych, układach odniesienia napięcia, zabezpieczeniach wejść mikrokontrolerów czy modułów sterujących w automatyce. Moim zdaniem to jeden z kluczowych elementów, które każdy elektryk i elektronik powinien rozpoznawać „z marszu”, bo bardzo często spotyka się ją na płytkach sterowników, zasilaczy impulsowych, modułów LED czy nawet prostych zasilaczy warsztatowych. Dobre praktyki mówią, żeby dobierając diodę Zenera, zwracać uwagę nie tylko na napięcie Zenera, ale też na dopuszczalną moc strat, prąd wsteczny oraz rezystor szeregowy, który ogranicza prąd w gałęzi stabilizacji. W dokumentacji technicznej urządzeń, na schematach ideowych, symbol zenera jest standardowo stosowany właśnie w tego typu obwodach: stabilizatorach, ogranicznikach przepięć, prostych układach zabezpieczających elektronikę sterującą w instalacjach elektrycznych przed skokami napięcia. Rozpoznanie tego symbolu na schemacie bardzo ułatwia diagnozowanie uszkodzeń, np. gdy zasilacz „zaniża” lub „obcina” napięcie, często winna jest właśnie uszkodzona dioda Zenera pracująca w trybie stabilizatora.
Na tym schemacie widać symbol diody z dodatkowym, charakterystycznym załamaniem linii przy katodzie. To jest właśnie graficzne oznaczenie diody Zenera, a nie typowych elementów, z którymi bywa mylona. W praktyce uczniowie często patrzą tylko na ogólny kształt symbolu i kojarzą go na przykład z triakiem albo tyrystorem, bo wiedzą, że to też są elementy półprzewodnikowe stosowane w układach mocy. Problem w tym, że triak i tyrystor mają zupełnie inne symbole: zawierają dodatkową elektrodę sterującą (bramkę), a ich struktura na rysunku jest symetryczna lub półsymetryczna względem kierunku przewodzenia. Triak przewodzi w obu kierunkach i symbolicznie pokazany jest jak dwa tyrystory połączone przeciwsobnie, z jedną wspólną bramką. Tyrystor z kolei ma wyraźnie zaznaczoną bramkę (G) oraz kierunek przewodzenia od anody do katody, ale bez żadnego „złamania” kreski jak w diodzie Zenera. Dioda LED ma inny, moim zdaniem bardzo charakterystyczny symbol: od diody wychodzą strzałki symbolizujące emisję światła. Jeśli na rysunku nie ma tych strzałek, to nie jest LED, nawet jeśli w praktyce dioda Zenera bywa montowana w obudowach podobnych gabarytowo do małych diod świecących. Z kolei zwykła dioda prostownicza ma prostą kreskę katody, bez dodatkowego zagięcia czy „ząbka”. To właśnie to zagięcie od strony katody odróżnia symbol diody Zenera od symbolu diody prostowniczej. Typowy błąd myślowy polega na tym, że ktoś widzi oznaczenia A i K, kojarzy to z diodą i zaznacza pierwszą znaną mu diodę, np. LED, bez analizy szczegółów symbolu. W technice, szczególnie przy czytaniu schematów instalacji sterowniczych i układów zasilania, takie pomyłki potrafią mocno namieszać przy diagnozie usterek. Dlatego warto wyrobić sobie nawyk zwracania uwagi na drobne elementy symbolu: obecność lub brak strzałek (LED), kształt katody (Zener), dodatkowe wyprowadzenie bramki (tyrystor, triak), symetrię układu. To są drobiazgi, ale w profesjonalnej praktyce elektryka i elektronika decydują o poprawnym zrozumieniu działania całego obwodu.