Prawidłowo powiązałeś pole elektryczne z gęstością ładunku. To jest bardzo podstawowa, ale jednocześnie kluczowa zależność z elektrostatyki. Z prawa Gaussa wynika, że źródłem pola elektrycznego są właśnie ładunki elektryczne, a w ujęciu bardziej „technicznym” mówimy o gęstości ładunku w przestrzeni. Gęstość ładunku opisuje, ile ładunku przypada na jednostkę objętości, powierzchni lub długości przewodnika, i to bezpośrednio wpływa na wartość natężenia pola elektrycznego w danym miejscu. Im większa gęstość ładunku, tym silniejsze pole – oczywiście przy zachowaniu tego samego układu geometrycznego. W praktyce, w technice wysokich napięć, rozkład gęstości ładunku na powierzchni przewodników decyduje o lokalnych wzmocnieniach pola, co ma znaczenie np. przy projektowaniu izolatorów, głowic kablowych, przepustów. Z mojego doświadczenia wynika, że w projektach instalacji i urządzeń, nawet jeśli na co dzień nie liczy się gęstości ładunku „z kartki”, to rozumienie, że pole elektryczne wynika z ładunków, pomaga lepiej ogarniać zjawiska przeskoków, wyładowań niezupełnych czy przebicia izolacji. W normach dotyczących izolacji, odstępów izolacyjnych i koordynacji izolacji (np. PN-EN z zakresu wysokich napięć) pośrednio zakłada się tę zależność: dopuszczalne natężenia pola wynikają z tego, jakie rozkłady ładunku są jeszcze bezpieczne dla danego materiału izolacyjnego. Można powiedzieć, że gęstość ładunku jest takim „źródłem” pola, a wszystkie dalsze parametry elektryczne i dielektryczne są konsekwencją tego, jak to pole działa w materiałach i układach przewodzących. Dlatego właśnie z podanych opcji tylko gęstość ładunku jest ściśle i bezpośrednio związana z polem elektrycznym.
W tym pytaniu łatwo się złapać na skojarzeniach z innymi działami elektrotechniki, szczególnie z magnetyzmem i maszynami elektrycznymi. Natężenie koercji i indukcja szczątkowa to typowe parametry związane z polem magnetycznym w materiałach ferromagnetycznych. Opisują one, jak magnesują się i rozmagnesowują rdzenie transformatorów, silników czy dławików. Natężenie koercji mówi, jakie przeciwne pole magnetyczne trzeba przyłożyć, żeby zredukować indukcję magnetyczną w materiale do zera, a indukcja szczątkowa to wartość indukcji, która pozostaje po usunięciu zewnętrznego pola. To są klasyczne wielkości z charakterystyki histerezy magnetycznej B–H i dotyczą pola magnetycznego, nie elektrycznego. Indukcyjność wzajemna z kolei opisuje sprzężenie magnetyczne między dwoma obwodami, np. uzwojeniami transformatora. Określa, jak zmiana prądu w jednym obwodzie wywołuje siłę elektromotoryczną w drugim, na skutek zmiennego pola magnetycznego. Tutaj też mamy do czynienia z polem magnetycznym, strumieniem magnetycznym i prawem indukcji Faradaya, a nie z polem elektrycznym jako takim. Typowy błąd myślowy polega na wrzucaniu „wszystkiego co elektromagnetyczne” do jednego worka: skoro jest mowa o polu, to ktoś wybiera parametr z magnesowania rdzenia, bo brzmi poważnie i technicznie. Tymczasem pole elektryczne, w sensie podstaw fizyki, jest bezpośrednio związane ze źródłami ładunku elektrycznego i jego gęstością w przestrzeni – to opisuje prawo Gaussa. Parametry magnetyczne, takie jak koercja, remanencja czy indukcyjność, opisują reakcję materiałów i obwodów na pole magnetyczne w urządzeniach, głównie maszynach i transformatorach. W praktyce instalacyjnej i urządzeniowej rozróżnianie tych pojęć jest istotne: inne zjawiska ogranicza się przez kontrolę pola elektrycznego (np. kształtowanie izolacji, ekrany), a inne przez kontrolę pola magnetycznego (dobór rdzeni, ekranowanie magnetyczne). Dlatego odpowiedzi oparte na parametrach magnetycznych nie mogą być uznane za poprawne w pytaniu, które dotyczy pola elektrycznego jako takiego.