Poprawnie wskazana została korozja elektrochemiczna, bo w opisie pytania kluczowe są dwie rzeczy: obecność roztworu działającego jak elektrolit oraz lokalne ogniwa na powierzchni metalu. To jest dokładnie definicja korozji elektrochemicznej – metal w środowisku przewodzącym prąd (np. woda z solami, płyn chłodniczy, kondensat z dodatkami) tworzy mini-ogniwa galwaniczne, w których zachodzą reakcje anodowe i katodowe. W miejscach anodowych metal się rozpuszcza, czyli po prostu ubywa materiału. W silnikach elektrycznych i spalinowych zjawisko to dotyczy np. obudów, wałów, śrub, kadłubów, a nawet zacisków elektrycznych, jeśli mają kontakt z wilgocią i zanieczyszczeniami. W praktyce widać to jako wżery, naloty, zmatowienia, czasem zielonkawe osady na połączeniach miedzianych. Dobre praktyki branżowe mówią jasno: trzeba ograniczać dostęp elektrolitu (czyli wilgoci i agresywnych związków), stosować odpowiednie powłoki ochronne (farby, galwanizację, anodowanie), właściwe dobieranie par materiałowych (żeby nie robić sobie przypadkiem ogniwa galwanicznego np. stal–miedź w wilgotnym środowisku) oraz dbać o odprowadzanie kondensatu. W dokumentacjach producentów silników i normach dotyczących eksploatacji urządzeń elektrycznych często jest mowa o wymaganej klasie szczelności IP, dopuszczalnej wilgotności oraz konieczności okresowych przeglądów antykorozyjnych. Z mojego doświadczenia w warsztacie największym problemem jest ignorowanie drobnych śladów korozji – potem nagle okazuje się, że śruba się urwała albo zacisk grzeje się, bo kontakt jest zniszczony przez korozję elektrochemiczną. Tu naprawdę opłaca się profilaktyka: czyste środowisko pracy, właściwe uszczelnienia, dobre jakościowo płyny eksploatacyjne i regularne oględziny elementów metalowych narażonych na wilgoć.
Opis w pytaniu jednoznacznie wskazuje na zjawisko korozji elektrochemicznej, ale wiele osób myli tu kilka pojęć, bo wszystkie w jakiś sposób kojarzą się z niszczeniem materiału. Korozja chemiczna zachodzi bez udziału przepływu prądu elektrycznego i bez tworzenia się lokalnych ogniw. To są typowe reakcje chemiczne między metalem a suchymi gazami lub cieczami, np. utlenianie w wysokiej temperaturze w piecu, działanie agresywnych chemikaliów w środowisku przemysłowym, ale bez roli elektrolitu przewodzącego prąd. W pytaniu natomiast wprost jest mowa o roztworze, który przewodzi prąd między lokalnymi ogniwami – a to już czysta elektrochemia, nie zwykła korozja chemiczna. Mylenie tych dwóch rodzajów korozji wynika często z tego, że wizualny efekt bywa podobny: nalot, wżery, ubytek materiału. Różnica jest w mechanizmie. Przyczyna termiczna kojarzy się z przegrzaniem, rozszerzalnością cieplną, zmianą struktury materiału pod wpływem temperatury, pęknięciami cieplnymi, przypaleniem izolacji uzwojeń czy deformacją elementów. Owszem, wysoka temperatura może przyspieszyć korozję, ale sama w sobie nie tworzy lokalnych ogniw i nie wymaga elektrolitu. W silnikach elektrycznych uszkodzenia termiczne to np. przegrzane uzwojenia, zmiana barwy lakieru, deformacja obudów z tworzyw – to zupełnie inna kategoria usterek niż korozja opisania w pytaniu. Z kolei przyczyna mechaniczna to różnego rodzaju uszkodzenia wynikające z sił fizycznych: uderzenia, wibracje, ścieranie, kawitacja, zmęczenie materiału, pęknięcia od przeciążenia. Można tu zaliczyć np. wytarte gniazda łożysk, pęknięte wały, uszkodzone łopatki wentylatora. W takich przypadkach nie potrzebujemy żadnego elektrolitu ani reakcji redoks – materiał jest niszczony przez siły, tarcie czy zmęczenie, a nie przez przepływ prądu w lokalnych ogniwach. Typowy błąd myślowy polega na tym, że jeśli widzimy zniszczony element, to szukamy najprostszej etykietki: mechaniczne albo termiczne. Tymczasem w technice, szczególnie przy silnikach i urządzeniach elektrycznych, trzeba patrzeć na mechanizm zjawiska. Jeżeli w opisie pojawia się elektrolit i lokalne ogniwa na powierzchni metalu, to od razu powinna się zapalić lampka: to jest korozja elektrochemiczna, czyli proces ściśle związany z przepływem prądu w środowisku wilgotnym lub przewodzącym.