Prawidłowo skojarzyłeś wskazanie miernika z pojęciem spodziewanego prądu zwarcia. Na ekranie widać m.in. parametr Ik = 17,79 A – to właśnie obliczony przez przyrząd spodziewany prąd zwarciowy w danym punkcie instalacji. Miernik najpierw mierzy impedancję pętli zwarcia ZL–N (tu 12,93 Ω) oraz napięcie sieci, a następnie na tej podstawie, zgodnie z prawem Ohma, wylicza, jaki prąd popłynie w przypadku zwarcia między przewodem fazowym a neutralnym lub ochronnym. To jest standardowa funkcja mierników do badań instalacji zgodnie z PN‑HD 60364 i normą PN‑EN 61557. Moim zdaniem to jeden z ważniejszych parametrów w praktyce elektryka, bo na jego podstawie ocenia się, czy zabezpieczenie nadprądowe (wyłącznik nadprądowy, bezpiecznik topikowy) zadziała wystarczająco szybko przy zwarciu. Jeśli spodziewany prąd zwarcia jest zbyt mały, czas wyłączenia może przekroczyć wartości dopuszczalne przez normę, co oznacza brak skutecznej ochrony przeciwporażeniowej przez samoczynne wyłączenie zasilania. W codziennej pracy wygląda to tak, że po wykonaniu pomiaru pętli zwarcia porównujesz Ik z katalogową charakterystyką zabezpieczenia B, C lub D – sprawdzasz, czy osiągnięty prąd mieści się w strefie natychmiastowego zadziałania wyłącznika. W dobrych praktykach pomiarowych przyjmuje się także, że pomiar wykonuje się w najdalszych punktach obwodu (np. ostatnie gniazdo w szeregu), bo tam impedancja jest największa, a więc spodziewany prąd zwarcia – najmniejszy. Jeżeli w tym najgorszym punkcie Ik jest wystarczająco duży, to cała reszta obwodu też będzie spełniała wymagania. Taki sposób myślenia bardzo ułatwia później dobór przekrojów przewodów, długości linii i rodzaju zabezpieczeń, żeby instalacja była nie tylko zgodna z przepisami, ale po prostu bezpieczna w eksploatacji.
Na przedstawionym ekranie miernika widać kilka różnych parametrów, co często prowadzi do mylnego kojarzenia, co tak naprawdę jest najważniejsze w kontekście pytania. Kluczowe jest tu oznaczenie Ik, czyli spodziewany prąd zwarcia. To nie jest ani prąd znamionowy instalacji, ani maksymalny prąd obciążenia, ani prąd zadziałania zabezpieczenia, tylko właśnie prąd, jaki popłynie w obwodzie w chwili zwarcia, wyliczony z mierzonej impedancji pętli zwarcia i napięcia sieci. Znamionowy prąd instalacji to parametr projektowy – dobiera się go z przekroju przewodów, warunków ułożenia, rodzaju izolacji, sposobu prowadzenia kabli, temperatury otoczenia. Tego nie mierzy się miernikiem pętli zwarcia; to jest wartość wynikająca z obliczeń i tabel normowych oraz katalogów producentów. Miernik nie ma skąd „wiedzieć”, jaki jest prąd długotrwałego obciążenia całej instalacji, bo to zależy od mnóstwa czynników poza samym punktem pomiarowym. Maksymalny prąd obciążenia też bywa mylony z prądem zwarcia. W praktyce użytkownik patrzy na wartość w amperach i czasem intuicyjnie zakłada, że skoro miernik pokazuje A, to chodzi o obciążenie robocze. Tymczasem na ekranie nie ma żadnego realnego obciążenia – to jest pomiar parametru sieci w stanie zbliżonym do jałowego i matematyczne wyliczenie, jaki prąd popłynie w warunkach awaryjnych. To nie jest prąd, który ma płynąć podczas normalnej pracy odbiorników. Prąd zadziałania zabezpieczenia to z kolei cecha samego wyłącznika lub bezpiecznika, określona przez producenta i charakterystykę B, C, D itd. Miernik go nie wyświetla, bo nie mierzy działania zabezpieczenia, tylko warunki sieci. Dopiero projektant lub pomiarowiec porównuje spodziewany prąd zwarcia Ik z prądem, przy którym zabezpieczenie wchodzi w strefę szybkiego zadziałania. Typowym błędem jest traktowanie wartości Ik jakby była równa prądowi znamionowemu wyłącznika, bo akurat „ładnie wygląda liczbowo”. W rzeczywistości poprawna interpretacja wymaga powiązania trzech elementów: impedancji pętli zwarcia, spodziewanego prądu zwarcia oraz charakterystyki zastosowanego zabezpieczenia. Dopiero wtedy można ocenić, czy instalacja spełnia wymagania ochrony przeciwporażeniowej przez samoczynne wyłączenie zasilania zgodnie z PN‑HD 60364.