Prawidłowo – w takim układzie regulacji mocy grzejnika rezystancyjnego zasilanego z sieci AC kąt opóźnienia załączenia tyrystora zmieniamy od π rad do 0 rad. Chodzi o klasyczną regulację fazową. Sieć ma przebieg sinusoidalny, a tyrystor przewodzi dopiero od chwili, gdy dostanie impuls bramkowy. Jeżeli włączymy go bardzo późno w danej połówce sinusoidy, czyli blisko π rad (180°), to przewodzi tylko krótki „ogon” napięcia, przez co średnia moc na grzejniku jest mała – praktycznie bliska zeru. Wraz ze zmniejszaniem kąta opóźnienia od π w stronę 0 tyrystor załącza się coraz wcześniej, więc przez większą część połówki sinusoidy grzejnik jest zasilany. Średnia wartość napięcia skutecznego rośnie, a z nią moc wydzielana w rezystorze (P≈U²/R). Dla α=0 rad tyrystor przewodzi całą dodatnią połówkę i moc jest maksymalna dla danego układu. Z praktycznego punktu widzenia taka regulacja fazowa jest typowa w prostych regulatorach mocy do grzałek, lutownic, suszarek, czy nawet prostych regulatorów temperatury w nagrzewnicach. W urządzeniach zgodnych z normami, np. PN-EN 60730 czy PN-EN 60335, dba się o to, by tyrystor i elementy sterujące były odpowiednio dobrane do prądów obciążenia oraz żeby ograniczyć zakłócenia EMC – stosuje się filtry, dławiki, czasem układy miękkiego startu. Warto też pamiętać, że grzejnik rezystancyjny jest obciążeniem liniowym i bardzo „wdzięcznie” współpracuje z regulacją fazową, w przeciwieństwie do urządzeń indukcyjnych, gdzie sterowanie kątem załączenia wymaga ostrożniejszego podejścia. Moim zdaniem to jedno z podstawowych zagadnień, które każdy elektryk powinien mieć dobrze „w palcu”, bo później wraca w różnych odmianach przy sterowaniu mocą.
W tego typu układzie łatwo się pomylić, bo intuicyjnie ktoś może uznać, że skoro chcemy „od zera do maksimum”, to kąt opóźnienia też powinien rosnąć od 0 do π rad. Tymczasem w regulacji fazowej tyrystora logika jest dokładnie odwrotna. Kąt opóźnienia załączenia liczymy od chwilowego przejścia napięcia przez zero. Gdy tyrystor zostanie załączony natychmiast po przejściu przez zero, czyli dla kąta bliskiego 0 rad, przewodzi on praktycznie całą połówkę sinusoidy. Oznacza to największą wartość średnią napięcia i największą moc w grzejniku rezystancyjnym. Jeżeli natomiast przesuwamy impuls wyzwalający w stronę końca połówki, aż do okolic π rad, to tyrystor przewodzi coraz krócej, a energia dostarczona w danym okresie maleje i moc grzejnika spada. Dlatego zakres 0 rad do π rad opisuje zmianę od mocy maksymalnej do minimalnej, a nie odwrotnie. Propozycje typu 0 rad do 2π rad czy 2π rad do 0 rad wynikają zwykle z nieporozumienia między pełnym okresem napięcia sieci (2π rad, czyli 360°) a pojedynczą połówką sinusoidy, w której tyrystor faktycznie pracuje w układzie jednopołówkowym. W tym schemacie tyrystor przewodzi tylko w jednej polaryzacji napięcia, więc analizujemy kąt przewodzenia w obrębie połówki, nie całego okresu. W praktyce regulację mocy w takim układzie opisuje się właśnie kątem α z zakresu 0…π dla każdej dodatniej połówki. Typowym błędem jest mieszanie pojęć: niektórzy utożsamiają „większy kąt” z „większą mocą”, bo kojarzą to z wykresem kołowym, a nie z faktem, że jest to kąt OPÓŹNIENIA załączenia. Z mojego doświadczenia wynika, że jak się raz narysuje przebieg sinusoidalny i zaznaczy moment załączenia tyrystora w różnych kątach, to od razu widać, że im później włączymy, tym mniej pola pod krzywą, czyli mniej energii dostarczamy do grzejnika. Stąd poprawny przebieg regulacji „od zera do maksimum” wymaga przesuwania kąta od π rad w stronę 0 rad, a nie w drugą stronę.