W tym układzie mamy klasyczny dzielnik napięcia złożony z trzech rezystorów połączonych szeregowo: 15 kΩ, 10 kΩ i 5 kΩ. Całość jest zasilana napięciem UWE = 30 V. Suma rezystancji wynosi 15 kΩ + 10 kΩ + 5 kΩ = 30 kΩ. Ponieważ prąd w obwodzie szeregowym jest wszędzie taki sam, na każdym odcinku rezystora odkłada się napięcie proporcjonalne do jego oporu. Czyli 30 V „dzieli się” dokładnie w stosunku 15 : 10 : 5. To razem 30 części, więc na 1 kΩ przypada 1 V. Stąd: na 5 kΩ mamy spadek 5 V, na odcinku 5 kΩ + 10 kΩ – łącznie 15 kΩ – mamy 15 V, a na całym dzielniku 30 kΩ – 30 V. Wyjście UWY jest wyprowadzone z suwaka umieszczonego na rezystorze 10 kΩ, między węzłem 5 kΩ a 15 kΩ. Oznacza to, że w najniższym położeniu (przy dolnym końcu rezystora 10 kΩ) otrzymujemy napięcie równe spadkowi na samym rezystorze 5 kΩ, czyli 5 V względem masy. W najwyższym położeniu (przy górnym końcu rezystora 10 kΩ) dostajemy sumę spadków na 5 kΩ i 10 kΩ, czyli 15 V. Dlatego prawidłowy przedział regulacji to (5 ÷ 15) V. W praktyce taki dzielnik może pracować jako prosty, pasywny regulator napięcia odniesienia, np. do nastawy progów w układach z komparatorem, do regulacji poziomu sygnału sterującego wejście analogowe sterownika PLC albo jako wstępne ustawienie napięcia dla wzmacniacza operacyjnego. W dobrych praktykach projektowych pamięta się, że odbiornik podłączony do UWY powinien mieć rezystancję wejściową wielokrotnie większą od rezystancji dzielnika (co najmniej 10 razy), żeby nie obciążać dzielnika i nie zaniżać napięcia. W normach dotyczących elektroniki i automatyki (np. PN‑EN z rodzin 61010, 61131) też pojawia się wymóg, aby układy pomiarowe nie wprowadzały istotnego obciążenia badanego obwodu – i dokładnie o to tutaj chodzi.
W analizie takiego układu bardzo łatwo pogubić się w liczbach i proporcjach, mimo że schemat jest prosty. Mamy trzy rezystory połączone szeregowo i zasilane napięciem 30 V. Kluczowe jest zrozumienie, że napięcie na poszczególnych odcinkach nie dobiera się „na oko”, tylko wynika z proporcji rezystancji. Całkowita rezystancja to 30 kΩ, więc prąd w obwodzie jest stały i równy I = 30 V / 30 kΩ = 1 mA. Potem wystarczy policzyć spadek napięcia na każdym odcinku: na 5 kΩ będzie 5 V, na 10 kΩ będzie 10 V, na 15 kΩ – 15 V. Sumarycznie daje to 30 V, czyli tyle, ile podaje źródło zasilania. Typowym błędem jest założenie, że skoro na górze jest 30 V, a na dole 0 V, to wyjście można regulować w całym zakresie od 0 do 30 V albo od 10 do 15 V, bo ktoś intuicyjnie „widzi” tylko środkowy rezystor. Jednak wyprowadzenie UWY nie jest dowolne, tylko ściśle związane z położeniem suwaka na rezystorze 10 kΩ. W najniższym położeniu suwak styka się z węzłem pomiędzy 5 kΩ i 10 kΩ, więc napięcie wyjściowe równa się spadkowi na dolnym rezystorze 5 kΩ, czyli 5 V. W najwyższym położeniu suwak jest przy węźle między 10 kΩ i 15 kΩ, a wtedy UWY jest sumą spadku na 5 kΩ i 10 kΩ, czyli 15 V. Nie ma fizycznej możliwości, aby w tym układzie uzyskać na wyjściu napięcie niższe niż 5 V (bo zawsze będzie obecny spadek na 5 kΩ) ani wyższe niż 15 V (bo powyżej tego punktu jest już rezystor 15 kΩ, do którego suwak nie sięga). Przedziały typu 10 ÷ 15 V albo 15 ÷ 25 V wynikają zwykle z niezrozumienia, że napięcie odniesienia liczymy od dołu dzielnika (od masy), a nie tylko na „kawałku” rezystora. Z mojego doświadczenia w serwisie elektroniki wynika, że wielu uczniów myli spadek napięcia na jednym rezystorze ze wzrostem napięcia względem masy w danym węźle. Dobra praktyka to zawsze narysować sobie prosty „profil” napięć wzdłuż dzielnika: od 0 V na dole, przez 5 V, 15 V, aż do 30 V na górze. Wtedy od razu widać, w jakim zakresie faktycznie może się poruszać napięcie na wyjściu takiego prostego regulatora.