Prawidłowa odpowiedź to układ TN-C, bo właśnie w tym systemie przewód ochronno‑neutralny PEN pełni jednocześnie dwie funkcje: przewodu roboczego (N) i ochronnego (PE). Jeśli dojdzie do jego przerwania, wszystkie obudowy urządzeń podłączone do tego przewodu „tracą” połączenie z punktem neutralnym transformatora i zaczynają się zachowywać jak przewód fazowy – może się na nich pojawić pełne napięcie fazowe względem ziemi. I to jest bardzo niebezpieczne w praktyce, bo użytkownik dotyka wtedy normalnie uziemionej obudowy, która nagle ma 230 V. W układzie TN-C przewód PEN jest prowadzony wspólnie, najczęściej w starszych instalacjach dwuprzewodowych (L + PEN). Z mojego doświadczenia właśnie w takich starych blokach czy kamienicach ryzyko przerwania PEN jest realne: poluzowane zaciski, korozja, złe łączenia. Normy, np. PN‑HD 60364, od lat odradzają stosowanie TN-C w instalacjach odbiorczych wewnątrz budynków i zalecają przejście na układy TN-S albo TN-C-S, gdzie funkcje PE i N są rozdzielone. Rozdział PEN na PE i N (układ TN-C-S) wykonuje się możliwie blisko punktu zasilania budynku, a w instalacji wewnętrznej prowadzi się już trzy przewody: L, N, PE, co radykalnie zmniejsza ryzyko pojawienia się napięcia na obudowach. W praktyce dobrym zwyczajem jest unikanie „dorabiania” ochrony przez mostkowanie bolca ochronnego do N w gniazdach w starych instalacjach TN-C. To tylko utrwala niebezpieczny układ i zwiększa skutki potencjalnego przerwania PEN. Zawodowo patrząc, każda modernizacja instalacji w TN-C powinna iść w stronę wymiany przewodów i rozdziału przewodu PEN, a nie kombinowania z przejściówkami. Moim zdaniem to jedno z kluczowych zagadnień ochrony przeciwporażeniowej, które każdy elektryk powinien mieć „w małym palcu”.
Sedno tego pytania dotyczy zrozumienia, jak zachowuje się instalacja w momencie przerwania przewodu ochronno‑neutralnego i w którym układzie sieciowym skutki są najbardziej niebezpieczne. Wiele osób intuicyjnie próbuje kojarzyć to z dowolnym układem z uziemieniem, ale to pewne uproszczenie, które prowadzi właśnie do błędnych odpowiedzi. Kluczowe jest, czy przewód ochronny i neutralny są rozdzielone, czy połączone w jeden wspólny przewód. W układzie IT punkt neutralny transformatora jest izolowany od ziemi lub uziemiony przez dużą impedancję. Odbiorniki mają swoje lokalne uziemienia ochronne, ale nie ma tu przewodu PEN łączącego funkcję N i PE. Przy pojedynczym uszkodzeniu doziemnym prąd jest niewielki, a napięcia na obudowach nie zachowują się tak, jak w TN-C. Przerwanie jakiegoś przewodu ochronnego w IT oczywiście pogarsza ochronę, ale nie powoduje typowego „wejścia” pełnego napięcia fazowego na obudowy wielu odbiorników jednocześnie w taki sposób, jak dzieje się to przy uszkodzeniu PEN. W układzie TT sytuacja jest inna: punkt neutralny transformatora jest uziemiony, a instalacja odbiorcza ma własne, niezależne uziemienie ochronne. Przewód neutralny N i przewód ochronny PE są rozdzielone i nie występuje tu przewód PEN. Uszkodzenie przewodu N nie powoduje automatycznie pojawienia się napięcia fazowego na obudowach, bo obudowy są połączone z uziomem ochronnym, a nie z przewodem neutralnym. Oczywiście przy złym uziemieniu i braku RCD ochrona może być niewystarczająca, ale mechanizm jest inny niż w pytaniu. W układzie TN-S przewody PE i N są rozdzielone na całej długości instalacji. To właśnie jest jedna z podstawowych dobrych praktyk, promowanych przez współczesne normy – osobny tor ochronny i osobny neutralny. Przerwanie przewodu N powoduje problemy z zasilaniem odbiorników (napięcia niesymetryczne, miganie oświetlenia, brak pracy części urządzeń), ale obudowy pozostają połączone z przewodem PE, który jest związany z ziemią i punktem neutralnym transformatora. Nie pojawia się na nich pełne napięcie fazowe tylko dlatego, że przerwał się N. Najbardziej krytyczny jest układ TN-C, gdzie występuje przewód PEN pełniący jednocześnie funkcję ochronną i roboczą. Przerwanie PEN powoduje, że wszystkie obudowy urządzeń podłączone do tego przewodu „unoszą się” do potencjału fazy przez odbiorniki, co może dać praktycznie pełne napięcie 230 V względem ziemi. Typowy błąd myślowy polega na tym, że ktoś myśli: „skoro w TN-S lub TT też jest uziemienie, to tam też pojawi się pełne napięcie przy przerwaniu przewodu”, a pomija fakt, że w tych układach obwód ochronny jest fizycznie oddzielony od przewodu neutralnego. Dlatego właśnie normy i dobre praktyki konsekwentnie odchodzą od TN-C w instalacjach wewnętrznych i promują TN-S lub TN-C-S jako znacznie bezpieczniejsze rozwiązania ochrony przeciwporażeniowej.