W tym układzie mamy prostownik trójfazowy zasilający rezystancyjne obciążenie R. Bez żadnych dodatkowych elementów napięcie wyprostowane Ud jest pulsujące – jego wartość chwilowa podąża za kolejnymi szczytami faz sieci, więc na oscyloskopie widać wyraźne „ząbki”. Żeby uzyskać przebieg z ilustracji 2, czyli napięcie dużo bardziej wygładzone, z niewielką tętnieniem, stosuje się filtr pojemnościowy: kondensator o dużej pojemności dołączony równolegle do obciążenia. Kondensator ładuje się do wartości szczytowej napięcia prostownika, a następnie w chwilach, gdy napięcie z prostownika spada, oddaje energię do obciążenia. Dzięki temu napięcie na R nie opada do zera między kolejnymi maksymami, tylko utrzymuje się blisko wartości szczytowej, co daje przebieg zbliżony do linii prawie prostej na tle sinusoid fazowych. W praktyce tak właśnie robi się w zasilaczach elektroniki, napędach z prostownikami diodowymi, zasilaczach LED czy prostownikach do ładowania akumulatorów – najpierw prostownik, a zaraz za nim duży kondensator elektrolityczny. Moim zdaniem warto pamiętać, że dobór pojemności to kompromis: im większa pojemność, tym mniejsze tętnienia, ale większe prądy udarowe przy włączaniu oraz większe obciążenie diod i transformatora. W dokumentacjach i normach dotyczących zasilaczy DC zaleca się liczenie pojemności na podstawie dopuszczalnego tętnienia ΔU i prądu obciążenia Id, typowo według zależności C ≈ Id·Δt/ΔU. Dobrą praktyką jest też stosowanie równolegle mniejszego kondensatora foliowego (np. 100 nF) dla poprawy filtracji zakłóceń wysokoczęstotliwościowych. Kluczowy jest jednak właśnie kondensator równolegle do R – to on zamienia prostownik z „gołego” źródła pulsującego w praktyczne źródło napięcia stałego o dużo lepszej jakości.
W tym zadaniu łatwo wpaść w kilka typowych pułapek myślowych związanych z filtracją napięcia po prostowniku. Intuicyjnie wiele osób kojarzy dławik z „wygładzaniem” prądu, więc próbuje go wstawić albo szeregowo, albo równolegle z obciążeniem. Problem w tym, że dławik działa głównie na zmiany prądu, a tutaj chcemy przede wszystkim ograniczyć zmienność napięcia na rezystorze R. Dławik szeregowy z obciążeniem istotnie ograniczałby tętnienia prądu, ale kosztem spadku napięcia i wcale nie dałby takiego przebiegu Ud, jak na ilustracji 2 – napięcie wciąż byłoby wyraźnie pulsujące, tylko kształt prądu byłby bardziej „wygładzony”. To jest klasyczne rozwiązanie dla prostownika zasilającego np. obciążenie indukcyjne, albo jako element filtru LC, ale sam dławik bez kondensatora nie zrobi z tego ładnego napięcia stałego. Jeszcze mniej sensu ma dławik równoległy do obciążenia. Indukcyjność w gałęzi równoległej przy napięciu niskoczęstotliwościowym AC/DC zachowuje się inaczej niż kondensator: dla składowej stałej ma bardzo dużą impedancję, więc praktycznie nie przewodzi, natomiast dla wyższych częstotliwości wręcz przeciwnie – może je „przyciągać”. W praktyce taki układ nie spełnia roli filtru napięcia stałego, a może nawet wprowadzać niepożądane zjawiska rezonansowe. Częsty błąd polega też na tym, że ktoś próbuje użyć kondensatora szeregowo z obciążeniem, myśląc, że „odetnie” on składową zmienną. Jest odwrotnie: kondensator blokuje składową stałą i przepuszcza zmienne, więc wstawienie go w szereg z R w prostowniku praktycznie uniemożliwiłoby uzyskanie stabilnego napięcia DC. W rezultacie dostalibyśmy dziwny układ z przesunięciem fazowym i spadkiem skutecznej wartości napięcia na obciążeniu, a nie klasyczny filtr wygładzający. Z mojego doświadczenia w serwisie zasilaczy wynika, że jeśli chcemy mieć gładkie napięcie stałe z prostownika diodowego, podstawową dobrą praktyką jest zastosowanie kondensatora o dużej pojemności właśnie równolegle do obciążenia – wszystkie inne konfiguracje z tego zadania albo nie przyniosą oczekiwanego efektu, albo wprowadzą dodatkowe problemy eksploatacyjne i cieplne.