Strumień indukcji magnetycznej oznaczamy symbolem Φ (fi) i mierzymy w weberach [Wb]. To jest wielkość całkująca, czyli opisuje „ile” pola magnetycznego przechodzi przez daną powierzchnię. W praktyce technicznej pojawia się dosłownie wszędzie tam, gdzie mamy transformator, silnik, dławik czy jakiekolwiek urządzenie z rdzeniem magnetycznym. Zgodnie z definicją, strumień magnetyczny to całka z indukcji magnetycznej B po powierzchni: Φ = ∫ B·dS. W uproszczeniu można sobie wyobrazić, że B mówi nam o „gęstości” pola, a Φ o całkowitej „ilości linii pola” obejmujących uzwojenie albo rdzeń. Z mojego doświadczenia, przy analizie transformatorów kluczowe jest właśnie pilnowanie wartości strumienia Φ i indukcji B, żeby nie doprowadzić do nasycenia rdzenia. W katalogach rdzeni i w dokumentacji maszyn elektrycznych producenci często podają dopuszczalne wartości indukcji B, a w obliczeniach projektowych liczymy strumień Φ = B·S. Jednostka weber [Wb] jest jednostką pochodną w układzie SI i bez niej trudno prawidłowo zinterpretować wzór na siłę elektromotoryczną w cewce: e = −dΦ/dt (prawo Faradaya). W pomiarach i diagnostyce urządzeń, zwłaszcza przy badaniu transformatorów, analiza zmian strumienia magnetycznego pozwala ocenić poprawność doboru liczby zwojów, przekroju rdzenia i napięcia zasilania. Moim zdaniem dobrze jest zapamiętać parę: Φ – weber, bo to się później automatycznie kojarzy z równaniami maszyn elektrycznych i obwodów magnetycznych.
W tym pytaniu bardzo łatwo pomylić kilka wielkości magnetycznych, bo wszystkie są ze sobą powiązane i na co dzień pojawiają się w podobnych zadaniach. Indukcję magnetyczną oznaczamy symbolem B i jej jednostką jest tesla [T], więc jeśli ktoś skojarzył poprawnie literę B, ale nie zwrócił uwagi, że pytanie dotyczy strumienia indukcji magnetycznej, to wpadł w typową pułapkę. B opisuje „gęstość” pola, natomiast strumień magnetyczny Φ jest zintegrowaną wartością tego pola po powierzchni, którą to pole obejmuje. To są dwie różne wielkości, chociaż ze sobą ściśle związane. W praktyce projektowej transformatorów liczymy najpierw B, a potem z tego wynika strumień Φ, ale w równaniach z prawa Faradaya pojawia się właśnie Φ. Stała μ, czyli przenikalność magnetyczna, podawana w henrach na metr [H/m], opisuje, jak dane medium (np. powietrze, stal, ferryt) przewodzi pole magnetyczne. To jest parametr materiału, a nie bezpośrednio miara pola czy strumienia. Z mojego punktu widzenia to klasyczne pomylenie wielkości materiałowej z wielkością opisującą stan pola. Natomiast H, wyrażane w amperach na metr [A/m], to natężenie pola magnetycznego, czyli wielkość związaną z prądem w przewodniku i geometrią obwodu magnetycznego. H i B łączy zależność B = μ·H, ale nadal nie jest to strumień Φ. W obwodach magnetycznych i przy analizie maszyn elektrycznych trzeba bardzo pilnować tych oznaczeń: H – natężenie pola, B – indukcja, Φ – strumień, μ – przenikalność. Pomylenie ich prowadzi potem do błędnych obliczeń liczby zwojów, przekroju rdzenia czy napięcia zasilania. W dobrych praktykach branżowych, zarówno w literaturze, jak i w normach, konsekwentnie używa się symbolu Φ z jednostką weber [Wb] dla strumienia magnetycznego i warto się do tego przyzwyczaić, bo to bardzo ułatwia czytanie dokumentacji technicznej i schematów.