Odpowiedź f∆h = -8 mm jest prawidłowa, ponieważ odchyłka zamkniętego ciągu niwelacyjnego oblicza się na podstawie różnicy pomierzonych przewyższeń w stosunku do różnicy wysokości reperów. W przypadku, gdy wysokość reperu początkowego i końcowego jest taka sama, oczekiwalibyśmy, że suma różnic pomierzonych przewyższeń (∆h<sub>p</sub>) powinna wynosić zero. Jednak w tym przypadku mamy do czynienia z wartością ∆h<sub>p</sub> równą -8 mm, co oznacza, że pomiary wskazują na ujemne odchylenie. Aby uzyskać odchyłkę zamkniętego ciągu, weźmiemy pod uwagę tę wartość i podzielimy przez 2, co daje -8 mm. W praktyce oznacza to, że podczas pomiarów wystąpił błąd systematyczny, który może być spowodowany np. różnicami w poziomie terenu lub błędami instrumentu. Zrozumienie tego procesu jest kluczowe w geodezji, ponieważ pozwala na korekcję pomiarów i zwiększenie dokładności wyników, co jest zgodne z najlepszymi praktykami w branży.
W przypadku pozostałych odpowiedzi występują różne nieporozumienia dotyczące zasad obliczania odchyłek w niwelacji. Odpowiedź f∆h = -16 mm sugeruje, że pomiar przewyższeń zostały podwojone, co jest błędnym podejściem, ponieważ odchyłka powinna być bezpośrednio związana z różnicą pomiędzy pomiarami a rzeczywistymi wartościami wysokości. Odpowiedź f∆h = 8 mm również nie ma sensu, ponieważ pomiar przewyższeń był ujemny, co powinno prowadzić do zrozumienia, że wynik powinien być oznaczony jako ujemny, nie dodatni. Warto zauważyć, że pomiar przewyżek w geodezji wymaga precyzyjnego podejścia do interpretacji danych i uwzględnienia wszelkich potencjalnych źródeł błędów. Wybór odpowiedzi f∆h = 0 mm nie uwzględnia faktu, że mamy do czynienia z rzeczywistą różnicą wynoszącą -8 mm, co oznacza, że istnieje wyraźna odchyłka, a nie brak jakiejkolwiek odchyłki. Kluczowym błędem w rozumieniu tych odpowiedzi jest nieuwzględnienie rzeczywistych pomiarów i ich interpretacji, co prowadzi do nieprawidłowych wniosków o istniejących błędach pomiarowych. W geodezji, zwłaszcza podczas niwelacji, istotne jest, aby lokalizować i rozumieć te odchylenia, aby poprawić dokładność i wiarygodność danych.