Poprawna odpowiedź to 89,10 m, co wynika z zastosowania podstawowych zasad trygonometrii w kontekście obliczeń inżynieryjnych. Przyrost współrzędnej ∆y<sub>1-2</sub> można obliczyć, stosując wzór: ∆y = d<sub>1-2</sub> * sin(A<sub>1-2</sub>), gdzie d<sub>1-2</sub> to długość między dwoma punktami, a A<sub>1-2</sub> to kąt, pod jakim ta długość jest zmierzona. W tym przypadku, mając d<sub>1-2</sub> równą 100,00 m oraz sinA<sub>1-2</sub> wynoszący 0,8910, obliczenie przyrostu współrzędnej wygląda następująco: ∆y = 100,00 m * 0,8910 = 89,10 m. W praktyce, taka metodologia obliczeń jest kluczowa w geodezji oraz budownictwie, gdzie precyzyjne pomiary i obliczenia są fundamentem dla prawidłowego prowadzenia prac budowlanych czy projektowych. Zrozumienie, jak wykorzystać funkcje trygonometryczne do obliczeń w przestrzeni, ma również zastosowanie w systemach nawigacyjnych oraz w analizie danych przestrzennych, co czyni tę wiedzę niezwykle przydatną w wielu branżach.
Wybór odpowiedzi innych niż 89,10 m wskazuje na nieporozumienie dotyczące zastosowania funkcji trygonometrycznych w kontekście pomiarów i obliczeń. Na przykład, odpowiedzi wskazujące wartości takie jak 8,91 m, 45,40 m czy 4,54 m są wynikiem błędnych interpretacji wzoru na przyrost współrzędnej. Często zdarza się, że osoby, które nie mają solidnych podstaw w trygonometrii, mogą mylić wartości sinusoidalne z innymi parametrami, co prowadzi do błędnych obliczeń. Zastosowanie funkcji sinusowego w obliczeniach jest kluczowe, ponieważ to właśnie dzięki niemu jesteśmy w stanie określić wysokość w oparciu o długość oraz kąt. Odpowiedzi 8,91 m i 4,54 m mogą sugerować błędne pomnożenie lub podział, natomiast 45,40 m może wynikać z niepoprawnego zastosowania wartości cosinus, co nie ma zastosowania w tym kontekście. Kluczowe jest zrozumienie, że do obliczenia przyrostu wysokości (∆y) potrzebujemy wartości sinus, a nie cosinus, co jest fundamentalnym błędem w myśleniu matematycznym. W praktyce, niepoprawne obliczenia mogą prowadzić do poważnych konsekwencji w inżynierii i architekturze, gdzie precyzja jest niezbędna, a nieprawidłowe dane mogą skutkować niewłaściwym zaprojektowaniem konstrukcji lub systemów nawigacyjnych.