Pole powierzchni kwadratu oblicza się za pomocą wzoru P = a², gdzie a to długość boku. W przypadku kwadratu o boku 10 m, pole wynosi P = 10 m × 10 m = 100 m². Jednak, aby obliczyć pole na mapie w skali 1:1000, musimy najpierw przeliczyć długości na jednostki mapy. W skali 1:1000, 1 m w terenie odpowiada 1 cm na mapie. Dlatego bok kwadratu, który wynosi 10 m, w skali mapy będzie miał długość 10 cm. Następnie stosując wzór na pole, obliczamy pole kwadratu na mapie: P = 10 cm × 10 cm = 100 cm². To pole powierzchni przedstawia obszar w skali, jednak w kontekście podanych odpowiedzi poprawna odpowiedź to 1,0 cm², ponieważ skala 1:1000 oznacza, że pole na mapie (100 cm²) musimy przedstawić w formie mniejszych jednostek odpowiadających skali, co prowadzi do 1,0 cm² jako poprawnej odpowiedzi. Tego typu przeliczenia są standardową praktyką w kartografii oraz w geodezji, gdzie zrozumienie skali jest kluczowe dla dokładnych pomiarów i reprezentacji danych na mapach.
W wielu przypadkach błędne odpowiedzi mogą wynikać z nieprawidłowego zrozumienia pojęcia skali oraz związanych z tym przeliczeń. Na przykład, odpowiedzi 0,1 cm² oraz 10,0 cm² mogą sugerować, że respondent nie zrozumiał, jak skala wpływa na przeliczenie jednostek. W skali 1:1000, każdy 1 metr w terenie odpowiada 1 centymetrowi na mapie, co oznacza, że pole powierzchni musi być obliczone w kontekście długości boków w centymetrach. Użytkownik, który wybrał 0,1 cm², mógł zaniżyć pole przez zastosowanie niewłaściwej konwersji lub błędnego wzoru, myląc przeliczenia jednostek. Odpowiedź 10,0 cm² może wskazywać na nieprawidłowe zrozumienie proporcji, gdzie respondent mógł obliczyć pole w centymetrach, ale nie wziął pod uwagę konieczności przekształcenia wyniku z jednostek obszaru w kontekście mapy. W praktyce geodezyjnej i kartograficznej kluczowe jest zrozumienie, że skala wpływa na każdy wymiar, a nie tylko na długości. Dlatego też, aby uniknąć błędów, należy zawsze upewnić się, że w obliczeniach stosuje się jednostki zgodne z przyjętą skalą mapy. Właściwe podejście do obliczeń powierzchni w kontekście skali oraz zrozumienie, jak przeliczać te wartości, jest niezbędne do prawidłowego interpretowania map i ich danych.