Poprawna odpowiedź to p = 9 mm. Aby obliczyć liniowe przemieszczenie punktu nr 21, kluczowe jest zrozumienie, jak różnice w współrzędnych X i Y wpływają na obliczenie przemieszczenia. Najpierw musimy znaleźć różnice pomiędzy współrzędnymi pierwotnymi a wtórnymi. Po ich obliczeniu, korzystamy ze wzoru na odległość między dwoma punktami w układzie kartezjańskim, który oparty jest na twierdzeniu Pitagorasa. Zastosowanie tego podejścia nie tylko pozwala na precyzyjne wyznaczenie przemieszczenia, ale także jest zgodne z międzynarodowymi standardami pomiarów geodezyjnych. W praktyce, takie obliczenia są niezbędne w wielu aplikacjach inżynieryjnych, takich jak monitorowanie deformacji budynków, infrastruktury czy w analizach związanych ze zmianami środowiskowymi. Regularne stosowanie tej metody zapewnia wysoką jakość pomiarów oraz ich wiarygodność.
Wszystkie odpowiedzi inne niż p = 9 mm wynikają najczęściej z błędnego zrozumienia metody obliczania przemieszczenia liniowego. Istotne jest, aby w procesie obliczeń poprawnie zidentyfikować współrzędne punktu przed i po pomiarach. Wiele osób może pomylić się w obliczeniach, myląc różnice z wartościami absolutnymi współrzędnych, co prowadzi do błędnych wyników. Odpowiedzi takie jak p = 5 mm, p = 10 mm, czy p = 3 mm mogą sugerować niepełne zrozumienie zastosowania twierdzenia Pitagorasa, które jest fundamentalne w obliczeniach przestrzennych. Typowe błędy myślowe, które prowadzą do takich niepoprawnych konkluzji, to pomijanie elementów wzoru lub fałszywe założenia dotyczące proporcji pomiędzy współrzędnymi. Każde nieprecyzyjne przeliczenie może skutkować dużymi błędami w końcowych wynikach, co w kontekście geodezji i pomiarów przestrzennych ma poważne konsekwencje. Dlatego tak ważne jest, aby przed przystąpieniem do obliczeń zawsze zweryfikować dane wejściowe oraz zastosować odpowiednie techniki analizy, co zapewnia wysoką jakość i dokładność uzyskanych wyników.