Prawidłowa odpowiedź wynika z zastosowania wzoru na obliczenie nachylenia (pochylenia) linii łączącej dwa punkty w terenie, które jest definiowane jako stosunek zmiany wysokości do poziomej odległości. W tym przypadku, mamy różnicę wysokości równą cięciu warstwicowemu, które wynosi 0,5 m, oraz poziomą odległość między punktami równą 50 m. Obliczamy pochylenie, dzieląc różnicę wysokości przez poziomą odległość, a następnie mnożąc wynik przez 100, aby otrzymać wartość procentową. Pochylenie = (0,5 m / 50 m) * 100 = 1%. Tego rodzaju obliczenia są niezbędne w inżynierii lądowej, geotechnice oraz planowaniu przestrzennym, gdzie ważne jest zrozumienie ukształtowania terenu. Używanie takich narzędzi pomagających w analizie pochylenia terenu przyczynia się do lepszego zaplanowania dróg, budynków czy innych inwestycji budowlanych, co z kolei wpływa na bezpieczeństwo i funkcjonalność tych obiektów. Standardy branżowe, takie jak normy geodezyjne, często opierają się na dokładnych obliczeniach nachyleń, co potwierdza znaczenie tej wiedzy.
Wiele osób może mieć trudności z poprawnym obliczeniem nachylenia, co często prowadzi do nieporozumień. Przykładowo, niektórzy mogą błędnie przyjąć, że pochylenie oblicza się jako wartość bezpośrednio proporcjonalną do zmiany wysokości, co jest niezgodne z definicją. Użycie wartości cięcia warstwicowego w mniejszym kontekście, jak na przykład 0,5 m, bez uwzględnienia stosunku do poziomej odległości 50 m, może prowadzić do mylnych wniosków. Odpowiedzi takie jak 10%, 5% czy 0,5% mogą wynikać z błędnych obliczeń lub nieporozumień w interpretacji danych. Na przykład, obliczenie 10% mogłoby powstać z błędnego założenia, że różnica wysokości jest większa lub że odległość jest krótsza, co jest typowym błędem myślowym. W inżynierii, precyzyjne obliczenia są kluczowe, dlatego ważne jest, aby rozumieć zarówno stosunek wysokości do odległości, jak i interpretację wyników jako wartości procentowej. Warto pamiętać, że takie obliczenia są podstawą w przygotowywaniu projektów budowlanych czy inżynieryjnych, gdzie prawidłowe zrozumienie i obliczenie nachyleń jest niezbędne do zapewnienia bezpieczeństwa i funkcjonalności budowli. Zastosowanie standardowych metod obliczeniowych i dokładnych pomiarów jest kluczowe w praktyce inżynieryjnej.