Topologia siatki jest jedną z najbardziej rozbudowanych form organizacji sieci komputerowych. Charakteryzuje się tym, że każdy węzeł sieci jest połączony bezpośrednio z wieloma innymi węzłami, co zapewnia wysoki poziom redundancji i niezawodności. Dzięki temu, w przypadku awarii jednego z połączeń lub urządzeń, dane mogą być przesyłane alternatywnymi trasami, co zwiększa odporność sieci na uszkodzenia. Topologia siatki jest często stosowana w środowiskach, gdzie niezawodność i dostępność sieci są krytyczne, na przykład w centrach danych czy sieciach operatorskich. Standardy takie jak IEEE 802.11s definiują sposób wdrażania topologii siatki w sieciach bezprzewodowych, co umożliwia tworzenie rozległych, samokonfigurowalnych sieci. W praktyce, mimo że topologia ta wiąże się z wyższymi kosztami związanymi z większą liczbą połączeń i skomplikowaną konfiguracją, oferuje niezrównane korzyści w kontekście wydajności i niezawodności, które często przeważają nad wadami, szczególnie w krytycznych aplikacjach biznesowych.
Topologia gwiazdy jest jedną z najbardziej popularnych i najczęściej stosowanych struktur sieciowych. W jej architekturze wszystkie urządzenia są połączone do centralnego punktu, którym jest najczęściej koncentrator lub przełącznik sieciowy. W przypadku awarii centralnego urządzenia cała sieć przestaje działać, co jest jednym z głównych ograniczeń tego rozwiązania. Jednakże prostota instalacji i zarządzania sprawia, że jest to często preferowany wybór w małych i średnich firmach. Topologia magistrali, z kolei, polega na tym, że wszystkie urządzenia są podłączone do jednego przewodu komunikacyjnego, co czyni ją mniej kosztowną pod względem okablowania. Jednakże trudności z diagnozowaniem problemów oraz ograniczona przepustowość sprawiają, że ta topologia jest coraz rzadziej stosowana w nowoczesnych sieciach. Topologia pierścienia, gdzie każde urządzenie jest połączone z dwoma innymi, tworząc zamkniętą pętlę, również ma swoje ograniczenia. W przypadku przerwania pierścienia cała sieć może przestać działać, chyba że zastosuje się dodatkowe mechanizmy redundancji. Każda z tych topologii ma swoje unikalne właściwości, które sprawiają, że są one stosowane w różnych scenariuszach, jednak żadna z nich nie oferuje poziomu niezawodności i skalowalności charakterystycznych dla topologii siatki, stąd wybór innej odpowiedzi byłby błędny w kontekście przedstawionego rysunku.