Prawidłowo wskazany został przełącznik warstwy trzeciej, czyli tzw. switch L3. To właśnie takie urządzenie potrafi zarówno przełączać ruch w ramach jednej sieci VLAN (funkcja typowa dla warstwy drugiej), jak i rutować ruch pomiędzy różnymi VLAN-ami, działając jak klasyczny router. W praktyce mówimy tu o tzw. routingu między-VLAN (inter-VLAN routing). W dobrze zaprojektowanych sieciach zgodnych z dobrymi praktykami (np. zaleceniami Cisco, Juniper itd.) tworzy się osobny VLAN dla każdej podsieci logicznej, a przełącznik warstwy trzeciej ma skonfigurowane interfejsy SVI (Switch Virtual Interface), po jednym dla każdego VLAN-u. Każdy taki SVI ma przypisany adres IP będący bramą domyślną dla hostów w danym VLAN-ie. Gdy pakiet musi przejść z jednego VLAN-u do drugiego, switch L3 sprawdza tablicę routingu, podejmuje decyzję na podstawie adresu IP docelowego i przekazuje ruch do odpowiedniego VLAN-u. Z zewnątrz wygląda to trochę jakby w jednym pudełku był router i przełącznik. Moim zdaniem to jedno z najczęściej spotykanych rozwiązań w sieciach firmowych, bo upraszcza architekturę i zwiększa wydajność – ruch między VLAN-ami nie musi wychodzić na osobny router, wszystko załatwia lokalnie urządzenie L3. Dodatkowo takie przełączniki często obsługują zaawansowane funkcje, jak listy ACL na poziomie IP, QoS w oparciu o warstwę trzecią czy protokoły routingu dynamicznego (OSPF, RIP, czasem nawet BGP w większych modelach). W realnych wdrożeniach, np. w szkole, biurze czy małej serwerowni, przełącznik L3 umieszcza się zwykle w szafie głównej jako tzw. core lub distribution switch, a do niego podłącza się przełączniki dostępu L2. Dzięki temu zarządzanie VLAN-ami i ruchem między nimi jest centralne, czytelne i zgodne ze standardową segmentacją sieci (np. osobny VLAN dla administracji, uczniów, serwerów, Wi-Fi itd.).
W tym pytaniu łatwo się pomylić, bo wszystkie wymienione urządzenia kojarzą się z siecią lokalną, ale tylko jedno z nich faktycznie realizuje routing między VLAN-ami. Częsty błąd polega na wrzucaniu do jednego worka wszystkich przełączników i zakładaniu, że skoro obsługują VLAN-y, to „na pewno jakoś to zrutują”. Niestety, tak to nie działa. Punkt dostępowy (access point) pracuje głównie w warstwie drugiej modelu OSI i jego podstawowym zadaniem jest mostkowanie ruchu między siecią bezprzewodową a przewodową. Owszem, nowocześniejsze kontrolery Wi-Fi potrafią przekierować ruch do konkretnych VLAN-ów w zależności od SSID, ale to nadal nie jest routing między VLAN-ami. AP po prostu wpuszcza ruch do odpowiedniego VLAN-u, a decyzje routingu podejmuje dalej router albo przełącznik L3. Z mojego doświadczenia sporo osób przecenia możliwości samych punktów dostępowych, bo interfejsy konfiguracyjne wyglądają „inteligentnie”, ale logika sieci dalej leży w klasycznych urządzeniach routujących. Przełącznik warstwy drugiej, nawet jeśli obsługuje VLAN-y portowe (Port Based VLAN), nadal działa na adresach MAC i ramkach Ethernet, nie na adresach IP. On potrafi odseparować ruch, stworzyć kilka domen rozgłoszeniowych i przypisać porty do różnych VLAN-ów, ale nie przeanalizuje nagłówka IP, więc nie podejmie decyzji routingu. To samo dotyczy zwykłego przełącznika L2 z tablicą adresów MAC – ta tablica służy jedynie do tego, żeby wiedzieć, na który port wysłać ramkę w obrębie tej samej sieci logicznej. Typowy tok myślenia prowadzący do złej odpowiedzi jest taki: „skoro przełącznik zna MAC-e i obsługuje VLAN-y, to pewnie umie też przekierować ruch między nimi”. W rzeczywistości routing wymaga logiki warstwy trzeciej, czyli analizy adresów IP, tablic routingu, ewentualnie protokołów routingu dynamicznego. Jeśli urządzenie nie jest wyraźnie opisane jako router lub przełącznik warstwy trzeciej, to nie zrealizuje inter-VLAN routingu. W praktycznych sieciach robi się to zawsze przez router z podinterfejsami dla każdego VLAN-u albo przez switch L3 z interfejsami SVI. To jest fundament poprawnej segmentacji sieci zgodnej ze standardami branżowymi.