Prawidłowo wskazany jest wykres 4, ponieważ przedstawia on klasyczny przebieg piłokształtny (sawtooth). Charakterystyczną cechą takiego sygnału jest liniowy, stały narost napięcia w czasie, a następnie nagły, bardzo szybki spadek do wartości początkowej. Ten gwałtowny zjazd przypomina właśnie ząb piły – stąd nazwa. W odróżnieniu od przebiegu trójkątnego, gdzie narastanie i opadanie są symetryczne i mają podobne nachylenie, w przebiegu piłokształtnym tylko jeden odcinek jest „łagodny”, a drugi jest prawie pionowy. W elektronice i technice cyfrowej taki sygnał stosuje się często w układach sterowania, generatorach przebiegów oraz w przetwornikach A/C jako sygnał odniesienia. Na przykład w klasycznym układzie sterowania PWM porównuje się napięcie piłokształtne z napięciem sterującym – od tego zależy szerokość impulsu kluczującego tranzystor w zasilaczu impulsowym. Podobne przebiegi spotyka się też w układach odchylania poziomego w starych monitorach CRT czy oscyloskopach analogowych, gdzie liniowy narost odpowiada równomiernemu przesuwaniu wiązki po ekranie. Moim zdaniem warto zapamiętać kształt piły właśnie przez tę asymetrię: wolno do góry, szybko w dół. W praktyce serwisowej, gdy patrzy się na ekran oscyloskopu, rozpoznanie piły od razu podpowiada, z jakim typem generatora lub układu synchronizacji mamy do czynienia, co bardzo przyspiesza diagnostykę.
Żeby dobrze rozpoznać przebieg piłokształtny, trzeba odróżniać kilka podstawowych kształtów sygnałów okresowych. Wykres 1 pokazuje klasyczną sinusoidę: przebieg gładki, zaokrąglony, opisany funkcją sinus lub cosinus. Amplituda zmienia się w sposób ciągły, bez odcinków prostoliniowych. Taki sygnał jest typowy np. dla napięcia sieciowego 230 V AC czy wyjścia generatora funkcyjnego ustawionego na „sinus”. To zupełnie inna charakterystyka niż w przebiegu piłokształtnym, gdzie dominują odcinki liniowe i ostre przejścia. Na wykresie 2 widoczny jest przebieg prostokątny. Napięcie skokowo przełącza się pomiędzy dwoma poziomami, dodatnim i ujemnym (lub dodatnim i zerem), a odcinki są poziome. Taki kształt spotykamy w sygnałach cyfrowych, zegarowych, sterujących logiką TTL/CMOS. Tu nie ma ani liniowego narastania, ani opadania – przejścia są niemal pionowe. Mylenie prostokąta z piłą zwykle wynika z tego, że obydwa sygnały mają ostre krawędzie, ale ich przebieg w środku okresu jest kompletnie inny. Wykres 3 przedstawia przebieg trójkątny. Napięcie rośnie liniowo, a potem w podobny sposób liniowo maleje, przy czym stoki są symetryczne – czas narastania i opadania jest podobny, a nachylenia przeciwne, ale zbliżone wartością bezwzględną. To bardzo częsty sygnał w testach wzmacniaczy, filtrów czy układów regulacji. Typowy błąd polega na wrzuceniu „piły” i „trójkąta” do jednego worka, bo oba mają kształt zbliżony do zębów. Różnica jest jednak kluczowa: piłokształtny przebieg ma jedną krawędź łagodną, drugą bardzo stromą, natomiast trójkątny ma dwie krawędzie o podobnym nachyleniu. Przebieg piłokształtny, pokazany na wykresie 4, charakteryzuje się więc wyraźną asymetrią: napięcie narasta liniowo przez większość okresu, po czym następuje gwałtowny skok w dół (lub odwrotnie – szybki skok w górę i wolne opadanie, zależnie od definicji). W praktyce technicznej rozróżnienie tych kształtów jest ważne, bo każdy z nich generuje inne widmo harmonicznych i inaczej zachowuje się w torach analogowych, filtrach czy układach sterowania. W diagnostyce z użyciem oscyloskopu poprawna identyfikacja przebiegu pozwala szybciej dojść, który blok układu pracuje nieprawidłowo i jakie mogą być przyczyny usterki. Dlatego warto wyrobić sobie nawyk dokładnego patrzenia na nachylenia i symetrię sygnału, a nie tylko na ogólny „ząbkowany” kształt.