Regulator napięcia prądu stałego oznaczony numerem 5 na schemacie to kluczowy element w zasilaczu liniowym, bo właśnie on odpowiada za utrzymanie stabilnego napięcia wyjściowego niezależnie od zmian obciążenia czy nawet drobnych wahań napięcia wejściowego. W praktyce taki regulator – na przykład popularny układ 78xx czy LM317 – po prostu 'pilnuje', żeby sprzęt zasilany nie został uszkodzony przez skoki napięcia. To bardzo ważne przy wrażliwych urządzeniach elektronicznych, takich jak sprzęt audio, sterowniki mikroprocesorowe czy aparatura laboratoryjna. Często spotyka się też regulatory z zabezpieczeniami przed przegrzaniem i przeciążeniem, co dodatkowo zwiększa bezpieczeństwo całej instalacji. Moim zdaniem, element ten jest trochę niedoceniany przez początkujących elektroników – a przecież jego jakość i parametry mają bezpośredni wpływ na niezawodność urządzenia. W branżowych normach, jak chociażby IEC 60950, zwraca się uwagę na stabilność napięcia i ochronę przed przepięciami, czyli dokładnie to, co zapewnia taki regulator. Warto pamiętać, że bez niego nawet najlepszy transformator i mostek prostowniczy nie dadzą stabilnego napięcia DC, a to już może powodować różne dziwne awarie.
Na przedstawionym schemacie blokowym zasilacza liniowego numerem 5 oznaczono regulator napięcia prądu stałego, co jest często mylnie interpretowane przez osoby początkujące w elektronice. Wybierając inne odpowiedzi, można łatwo pomylić funkcje poszczególnych bloków. Transformator, oznaczony zwykle jako pierwszy blok od strony wejścia, służy do zmiany poziomu napięcia przemiennego, a nie do regulacji czy stabilizacji napięcia – to w sumie tylko przygotowuje napięcie do dalszej obróbki, nie zapewniając żadnej stabilności DC. Wejście prądu przemiennego to jedynie punkt, w którym napięcie z sieci trafia do układu – nie ma tam żadnej funkcji regulacyjnej. Bardzo popularnym błędem jest utożsamianie układu Graetza z funkcją regulacji – tymczasem mostek prostowniczy odpowiada tylko za zamianę napięcia przemiennego na pulsujące napięcie stałe, ale bez możliwości eliminacji wahań czy precyzyjnego ustalenia poziomu wyjściowego napięcia. To właśnie regulator jest gwarancją, że nawet jeśli napięcie wejściowe czy obciążenie się zmienia, na wyjściu utrzymane zostanie stabilne napięcie – zgodnie z wymaganiami np. układów cyfrowych czy czujników. W praktyce, brak zrozumienia podziału ról poszczególnych bloków skutkuje projektowaniem zasilaczy, które nie spełniają norm stabilności, co prowadzi do nieprzewidywalnego działania urządzeń lub nawet do ich uszkodzenia. Dobra praktyka to zawsze analizować, do czego służy dany element na schemacie, i nie przypisywać mu zadań innych bloków. Z mojego doświadczenia w serwisie wynika, że niedocenianie roli regulatora często kończy się różnymi „dziwnymi” awariami, które trudno szybko zdiagnozować bez podstawowej wiedzy teoretycznej – to taki klasyk w naszej branży.