Schemat blokowy przedstawiony na rysunku ilustruje budowę zasilacza awaryjnego, czyli systemu UPS (Uninterruptible Power Supply). UPS jest kluczowym urządzeniem w infrastrukturze IT, ponieważ zapewnia ciągłość zasilania w przypadku zaniku napięcia sieciowego. Główne komponenty UPS to ładowarka akumulatorów, zestaw akumulatorów, falownik oraz tłumik przepięć. Ładowarka odpowiada za utrzymanie akumulatorów w stanie pełnego naładowania, co jest kluczowe dla zapewnienia gotowości do pracy. W momencie zaniku zasilania sieciowego energia z akumulatorów jest przekształcana za pomocą falownika z prądu stałego na przemienny, dostarczając zasilanie do podłączonych urządzeń. Tłumik przepięć chroni przed nagłymi skokami napięcia, co jest zgodne ze standardami bezpieczeństwa IEC. Praktyczne zastosowanie UPS obejmuje ochronę sprzętu komputerowego, serwerów oraz aparatury medycznej, gdzie nawet krótkotrwała przerwa w zasilaniu może prowadzić do utraty danych lub uszkodzenia sprzętu. UPSy są powszechnie stosowane w centrach danych, szpitalach i przedsiębiorstwach wymagających niezawodności zasilania.
Zasilacz komputerowy analogowy oraz impulsowy różnią się znacząco od zasilacza awaryjnego pod względem konstrukcji i zastosowania. Zasilacz analogowy nie jest typowym rozwiązaniem we współczesnych systemach IT, gdzie dominują zasilacze impulsowe ze względu na wyższą efektywność energetyczną i mniejsze rozmiary. Zasilacz impulsowy komputera, choć popularny, nie oferuje funkcji podtrzymywania zasilania w przypadku przerwy w dostawie energii, co czyni go nieodpowiednim do zastosowania w krytycznych systemach wymagających ciągłości pracy. Natomiast zasilacz impulsowy dla matrycy RAID służy do zapewnienia stabilnego napięcia dla tego typu urządzeń pamięci masowej, ale również nie zapewnia ochrony przed przerwami w zasilaniu. Błędna identyfikacja zasilacza UPS z innymi typami zasilaczy może wynikać z niezrozumienia funkcji akumulatorów i falownika, które są kluczowe dla działania UPS. Warto podkreślić, że UPS ma na celu nie tylko dostarczenie energii podczas awarii, ale również ochronę przed przepięciami, co jest szczególnie ważne w ochronie delikatnych podzespołów elektronicznych przed uszkodzeniem. Dlatego rozumienie różnic w konstrukcji i funkcjach różnych typów zasilaczy jest kluczowe w kontekście zastosowań przemysłowych i informatycznych, gdzie niezawodność zasilania ma kluczowe znaczenie dla bezpieczeństwa danych i ciągłości operacyjnej.