Topologia pierścieniowa to struktura sieciowa, w której każdy komputer (węzeł) jest połączony z dokładnie dwoma innymi komputerami, tworząc zamknięty okrąg. W praktyce oznacza to, że dane przesyłane z jednego komputera muszą przechodzić przez inne węzły, zanim dotrą do odbiorcy. Taka konfiguracja pozwala na zorganizowane przesyłanie informacji i zmniejsza ryzyko kolizji danych, co czyni ją atrakcyjną w określonych zastosowaniach. Doskonałym przykładem są sieci LAN w biurach, gdzie pierścieniowe połączenia mogą ułatwiać zarządzanie danymi pomiędzy użytkownikami. Technologia Token Ring, która działa na zasadzie topologii pierścieniowej, była jednym z pierwszych standardów w sieciach lokalnych. Warto podkreślić, że topologia ta wymaga użycia odpowiednich urządzeń do zarządzania ruchem danych, a także że w przypadku awarii jednego z węzłów może dojść do przerwania całej komunikacji, jednak zastosowania technologii redundancji mogą zminimalizować ten problem.
Wybór innej topologii, takiej jak siatka, gwiazda czy magistrala, wiąże się z istotnymi różnicami w sposobie połączenia komputerów i zarządzania danymi. W topologii siatki każdy komputer może łączyć się z wieloma innymi, co zwiększa niezawodność, ale nie odpowiada podanemu w pytaniu warunkowi, że każdy komputer jest połączony tylko z dwoma sąsiadami. W układzie gwiaździstym, wszystkie urządzenia są połączone z centralnym punktem (hubem lub switchem), co z kolei wprowadza dodatkowe urządzenie aktywne, a także naraża sieć na ryzyko awarii centralnego węzła. Topologia magistrali polega na połączeniu wszystkich komputerów jednym wspólnym kablem; każdy komputer przekazuje dane wzdłuż tego kabla, co prowadzi do ryzyka kolizji i nie sprzyja stabilności połączeń. W kontekście standardów i dobrych praktyk wiemy, że wybór odpowiedniej topologii sieciowej powinien być oparty na specyficznych wymaganiach danego środowiska, a także na analizie możliwych awarii, co nie ma miejsca w przypadkach podanych odpowiedzi. Zrozumienie tych różnic jest kluczowe dla efektywnego projektowania i zarządzania sieciami komputerowymi.