Odpowiedź X/Y jest poprawna, ponieważ w tym trybie oscyloskop dwukanałowy pozwala na jednoczesne wyświetlenie zależności prądowo-napięciowej diody półprzewodnikowej. W trybie X/Y jeden kanał oscyloskopu jest przypisany do napięcia (U), a drugi do prądu (I), co umożliwia bezpośrednie zrozumienie charakterystyki diody poprzez obserwację kształtu wykresu, który przedstawia, jak zmienia się prąd w zależności od zastosowanego napięcia. W praktyce, taka analiza pozwala na określenie punktów pracy diody, jak na przykład napięcie progowe oraz maksymalny prąd. Ponadto, standardy branżowe, takie jak normy IEC, zalecają wykorzystanie trybu X/Y do analizy nieliniowych elementów elektronicznych. Umiejętność skutecznego korzystania z oscyloskopów w tym trybie jest kluczowa dla inżynierów zajmujących się projektowaniem obwodów elektronicznych oraz diagnostyką układów elektronicznych. Przykłady zastosowań obejmują badanie diod prostowniczych, złącz złączowych w tranzystorach oraz analizy w układach wzmacniających.
Użycie trybu AC do analizy charakterystyki prądowo-napięciowej diody półprzewodnikowej jest niewłaściwe, ponieważ ten tryb oscyloskopu służy przede wszystkim do analizy sygnałów zmiennych. W trybie AC oscyloskop nie wyświetla sygnałów stałych, co ogranicza możliwość monitorowania prądów i napięć w nieliniowych elementach, takich jak diody, które wymagają analizy w pełnym zakresie napięć. Z kolei tryb DC pozwala na obserwację sygnałów stałych, ale nie umożliwia jednoczesnego przedstawienia prądu i napięcia na jednym wykresie, co jest kluczowe do zrozumienia charakterystyki diody. Opcja X/T również nie jest odpowiednia, gdyż ten tryb jest używany do analizy sygnałów czasowych, a nie do porównania dwóch zmiennych, jak w przypadku prądu i napięcia. Typowym błędem przy wyborze trybu oscyloskopu jest założenie, że wystarczy wybrać jakikolwiek tryb do analizy, nie biorąc pod uwagę specyfiki badanego elementu. Aby skutecznie analizować nieliniowe charakterystyki, konieczne jest zrozumienie, że odpowiedni tryb X/Y dostarcza najbardziej wartościowych informacji, które są niezbędne dla właściwej interpretacji wyników oraz projektowania układów elektronicznych.