Odpowiedź 90° jest prawidłowa w kontekście regulatorów typu PD (proporcjonalno-derywacyjne). W takim regulatorze sygnał wyjściowy jest opóźniony w stosunku do sygnału wejściowego o 90°. Oznacza to, że reakcja na zmiany sygnału wejściowego jest natychmiastowa, jednakże nie uwzględnia wartości sygnału, co prowadzi do przesunięcia fazowego. Praktycznie, w zastosowaniach inżynieryjnych, takich jak automatyka przemysłowa, regulator PD jest często stosowany do zwiększenia dynamiki systemu. Na przykład, w systemach kontroli temperatury, zastosowanie regulatora PD może poprawić odpowiedź systemu na zmiany obciążenia, umożliwiając szybsze osiągnięcie zadanej temperatury. Warto również zauważyć, że w praktyce dobór odpowiednich parametrów regulatora PD, tj. wzmocnienia proporcjonalnego i współczynnika pochodnej, ma kluczowe znaczenie dla zachowania stabilności i jakości regulacji. Właściwe zaprojektowanie systemu z wykorzystaniem regulatora PD zwiększa jego wydajność, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki.
Odpowiedzi takie jak 45°, 0° i -90° są nieprawidłowe z perspektywy teorii przesunięcia fazowego w regulatorach PD. Sugerowanie, że przesunięcie fazowe wynosi 45° jest błędne, ponieważ odpowiada to określonej konfiguracji układów, która nie jest charakterystyczna dla regulatorów PD. Tego typu wartości przesunięcia są związane z bardziej złożonymi układami, które uwzględniają dodatkowe elementy, takie jak filtry lub inne formy regulacji. Natomiast odpowiedź 0° implikuje, że sygnał wyjściowy jest synchroniczny z wejściowym, co jest sprzeczne z zamierzeniem regulatora PD, który zawsze wprowadza pewne opóźnienie. W przypadku odpowiedzi -90°, sugeruje to, że sygnał wyjściowy jest opóźniony w przeciwnym kierunku, co również nie znajduje potwierdzenia w teorii. W inżynierii, zrozumienie przesunięcia fazowego jest kluczowe dla zapewnienia stabilności systemu regulacji. Błędy w ocenie przesunięcia fazowego mogą prowadzić do oscylacji lub niestabilności, co stanowi jeden z najczęstszych problemów w praktyce inżynierskiej. Dlatego ważne jest, aby dokładnie analizować odpowiedzi na temat przesunięcia fazowego, aby uniknąć błędów projektowych i osiągnąć optymalne działanie systemów automatyki.