Poprawna odpowiedź to 50 mm, co oznacza, że siłownik jednostronnego działania o takim rozmiarze jest w stanie generować wystarczającą siłę przy ciśnieniu 6 barów. Aby to zrozumieć, warto przyjrzeć się wzorowi na siłę: F = P * A, gdzie F to siła, P to ciśnienie, a A to pole przekroju tłoka. Pole przekroju tłoka obliczamy ze wzoru A = π * (d/2)², gdzie d to średnica tłoka. Po przekształceniu wzoru, możemy obliczyć średnicę tłoka wymagającą dla konkretnych parametrów. Przy średnicy 50 mm, pole przekroju wynosi około 1,963 cm², co przy ciśnieniu 6 barów (co odpowiada 600 kPa) daje siłę równą 1178 N. Taka siła jest wystarczająca do osiągnięcia zamierzonego wyniku 1120 N, co czyni siłownik o średnicy 50 mm idealnym rozwiązaniem. W praktyce, dobór odpowiedniego siłownika jest kluczowy w aplikacjach takich jak automatyka przemysłowa, gdzie precyzja i moc są istotnymi czynnikami.
Wybór innych średnic tłoka, takich jak 100 mm, 63 mm czy 80 mm, może prowadzić do błędnych wyników, ponieważ generują one siły, które znacznie przekraczają wymagane 1120 N. Na przykład, siłownik o średnicy 100 mm przy ciśnieniu 6 barów generuje siłę około 3534 N, co jest zdecydowanie zbyt dużą wartością w kontekście określonego zadania. Przy 63 mm średnicy, siła wynosi około 1885 N, a dla średnicy 80 mm osiąga 3016 N. Te wartości są wynikiem zastosowania wzoru F = P * A, co prowadzi do błędnych wniosków w kontekście efektywnego doboru komponentów do systemów hydraulicznych. Dlaczego jednak te odpowiedzi są błędne? Typowym błędem jest nieuwzględnienie tego, że zbyt duża siła generowana przez siłownik może prowadzić do uszkodzeń lub nieefektywnego działania całego systemu. Ponadto, wybór większej średnicy tłoka zwiększa objętość cieczy w układzie hydraulicznym, co może prowadzić do większych opóźnień w czasie reakcji systemu. Właściwy dobór średnicy siłownika nie tylko gwarantuje, że system działa zgodnie z zamierzeniem, ale również pozwala na optymalizację kosztów, redukcję zużycia energii i zwiększenie efektywności operacyjnej. Dlatego tak ważne jest, aby zrozumieć, jak obliczenia te wpływają na wydajność całego systemu hydraulicznego.