Odpowiedź 1,2 kΩ jest poprawna, ponieważ aby obliczyć wartość rezystora R1, musimy zrozumieć rolę, jaką odgrywa on w obwodzie ograniczającym prąd diody. Przy napięciu zasilania wynoszącym 12V i napięciu na diodzie równym 1,6V, różnica napięć wynosi 10,4V, którą musimy rozłożyć na rezystorze R1. Przypominając sobie prawo Ohma (V = I * R), mamy napięcie (V) wynoszące 10,4V i prąd (I) 0,01A. Stąd możemy obliczyć wartość rezystora R1: R = V/I = 10,4V/0,01A = 1040Ω, co po zaokrągleniu daje 1,2 kΩ. W praktyce, dobieranie odpowiednich wartości rezystorów jest kluczowe dla prawidłowego działania komponentów elektronicznych, aby uniknąć ich uszkodzenia, a także zapewnić stabilność w obwodzie. Dobre praktyki inżynierskie zalecają zawsze weryfikować obliczenia i rozważać tolerancje komponentów, co pozwala na zwiększenie niezawodności całego układu.
Odpowiedzi 12,0 kΩ, 120,0 kΩ oraz 1 200,0 kΩ są błędne i wynikają z nieprawidłowego zrozumienia zasad obliczeń związanych z rezystancją w obwodach elektrycznych. Przede wszystkim, warto zauważyć, że każda z tych wartości jest znacznie wyższa niż wymagana, co prowadziłoby do zbyt niskiego prądu płynącego przez diodę, a co za tym idzie, nieosiągnięcia jej pełnej funkcjonalności. Przy zbyt dużej rezystancji, prąd byłby zbyt niski, co mogłoby powodować, że dioda nie zapali się wcale, lub rozjaśni się tylko w minimalnym stopniu, nie osiągając zamierzonego efektu. Typowe błędy myślowe, które prowadzą do takich wniosków, to zapominanie o kluczowym znaczeniu różnicy napięć w obwodzie oraz wielkości prądu, który ma być ograniczony. Ważne jest, aby podczas obliczeń zawsze uwzględniać wartości rzeczywiste napięcia i prądu, a także zapoznawać się z zasadami działania poszczególnych komponentów, aby zrozumieć, jak mogą one współdziałać w różnych konfiguracjach. Użycie zbyt wysokich wartości rezystancji to częsty błąd początkujących inżynierów, który można wyeliminować poprzez praktyczne ćwiczenie z obliczania rezystancji w różnych układach. W kontekście inżynierii elektronicznej, znajomość podstawowych zasad obliczeń i komponentów jest niezbędna do skutecznego projektowania i budowy stabilnych i niezawodnych układów elektronicznych.