Odpowiedź "planetarna" jest poprawna, ponieważ przedstawiona na rysunku przekładnia wykazuje cechy charakterystyczne dla układu planetarnego. W przekładni planetarnej centralne koło, zwane słońcem, jest otoczone przez koła zębate, które obracają się wokół jego osi, co tworzy układ satelitów. Tego rodzaju przekładnie są szeroko stosowane w różnych aplikacjach, takich jak automatyczne skrzynie biegów, napędy elektryczne oraz w mechanizmach zegarowych. Przekładnie planetarne charakteryzują się wysoką wydajnością, kompaktowymi rozmiarami oraz możliwością przenoszenia dużych momentów obrotowych przy niewielkich wymiarach. Dzięki zastosowaniu wielu kół zębatych, przekładnia planetarna umożliwia uzyskanie różnych przełożeń, co czyni ją niezwykle wszechstronnym rozwiązaniem w inżynierii mechanicznej. Warto również zauważyć, że przekładnie planetarne często mają lepsze parametry wytrzymałościowe i wydajnościowe w porównaniu do innych typów przekładni, jak np. zębate czy ślimakowe.
Odpowiedzi takie jak "stożkowa", "zębata" oraz "ślimakowa" są niewłaściwe, ponieważ nie pasują do charakterystyki układu przedstawionego na rysunku. Przekładnia stożkowa korzysta z kół zębatych o stożkowym kształcie, które są zaprojektowane do przenoszenia napędu pod kątem, skutkując przekładnią kątową. Tego rodzaju mechanizmy są zazwyczaj stosowane w układach, gdzie zmiana kierunku napędu jest istotna, jak w mostach napędowych pojazdów, ale nie mają zastosowania w przedstawionym układzie planetarnym. Z kolei przekładnia zębata, która jest najprostszym typem przekładni, wykorzystuje proste koła zębate do przenoszenia momentu obrotowego w linii prostej. Ten typ konstrukcji nie pozwala na rotację wokół osi centralnej jak w przypadku przekładni planetarnej. Przekładnia ślimakowa, z kolei, składa się z ślimaka i koła zębatego, co umożliwia znaczną redukcję prędkości obrotowej, jednak nie zapewnia jej wielokrotnego obrotu wokół osi centralnej, co czyni ją nieodpowiednią w kontekście rysunku. Zrozumienie różnic między tymi typami przekładni jest kluczowe w inżynierii mechanicznej, ponieważ prowadzi do lepszego doboru elementów w zależności od wymagań aplikacji, a także do osiągnięcia optymalnej wydajności i niezawodności systemów napędowych.