Turbina Peltona jest idealnym rozwiązaniem do zastosowania w warunkach dużych spadków wody, szczególnie gdy wysokość spadku przekracza 500 metrów. Działa ona na zasadzie impulsu, co oznacza, że wykorzystuje energię kinetyczną spadającej wody do napędu wirnika. Wysokie spadki wody generują dużą prędkość strumienia, co czyni turbiny Peltona bardzo efektywnymi w takich warunkach. Przykłady zastosowania turbin Peltona można znaleźć w elektrowniach wodnych, takich jak elektrownia HPP Tignes we Francji, gdzie wykorzystuje się tę technologię do produkcji energii elektrycznej z dużych wysokości. Turbiny Peltona są również preferowane w miejscach, gdzie dostępne jest ograniczone przepływy wody, ale bardzo wysoka energia potencjalna. W kontekście dobrych praktyk branżowych, turbiny Peltona są zgodne z normami IEC 60041 dotyczącymi badań hydraulicznych turbin wody, co zapewnia ich niezawodność i wysoką wydajność.
Wybór turbin do wykorzystania w dużych spadkach wodnych musi opierać się na znanych zasadach mechaniki płynów i charakterystyce działania różnych typów turbin. Turbiny Francisa, choć są wszechstronne i mogą być używane w szerokim zakresie spadków, nie są optymalne w sytuacjach, gdzie wysokość spadku wody przekracza 500 metrów. Ich konstrukcja bazuje na zasadzie osiowego przepływu, co czyni je mniej efektywnymi w warunkach dużych prędkości spływu. Zastosowanie turbiny Deriaza, mimo że jest innowacyjne i może działać w niektórych warunkach, nie jest powszechnie preferowane w przypadku dużych spadków, ponieważ nie dysponuje odpowiednią efektywnością w takich konfiguracjach. Turbiny Kaplana, mimo że doskonale sprawdzają się w niskich spadkach, nie są projektowane do wysokich różnic wysokości, ponieważ ich mechanizm działania opiera się na zasadzie przepływu osiowego i są bardziej odpowiednie dla dużych przepływów wody. Wybór niewłaściwej turbiny w kontekście konkretnego zastosowania może prowadzić do znaczącej utraty wydajności, co jest krytycznym błędem w projektowaniu systemów hydroenergetycznych. Zrozumienie tych zasad oraz ich praktyczne zastosowanie są kluczowe dla efektywności i rentowności projektów energetycznych opartych na energii wodnej.