Aby obliczyć całkowitą pojemność cieczy potrzebnej do napełnienia instalacji solarnej, należy uwzględnić wszystkie elementy składowe systemu. W tym przypadku mamy trzy kolektory o pojemności 1,1 litra każdy, co daje łącznie 3,3 litra. Następnie dodajemy pojemność wężownicy zasobnika c.w.u. wynoszącą 4,5 dm3 (czyli 4,5 litra), grupy pompowej 1,5 dm3 (1,5 litra) oraz przeponowego naczynia wzbiorczego o pojemności 15 dm3 (15 litrów). Obliczając całkowitą pojemność, otrzymujemy: 3,3 + 4,5 + 1,5 + 15 = 24,3 litra. Dodatkowo, musimy uwzględnić objętość cieczy w rurach. Mając 30 mb rur, a w jednym metrze mieści się 0,05 litra, całkowita objętość cieczy w rurach wynosi 1,5 litra (30 * 0,05). Zatem całkowita objętość glikolu potrzebna do napełnienia instalacji wynosi 24,3 + 1,5 = 25,8 litra. Zastosowanie odpowiednich ilości glikolu w instalacjach solarnych jest kluczowe dla zapewnienia efektywności oraz ochrony przed zamarzaniem, co jest zgodne z dobrymi praktykami w branży.
W przypadku obliczeń dotyczących ilości cieczy w instalacji solarnej, kluczowe jest zrozumienie, że każdy element systemu ma znaczenie i należy dokładnie uwzględnić jego pojemność. Często zdarza się, że niektórzy mogą pomijać pojemności poszczególnych komponentów, co prowadzi do niedoszacowania potrzebnej ilości cieczy. Na przykład, nie uwzględniając pełnej pojemności wężownicy czy grupy pompowej, można dojść do błędnych wniosków, takich jak zaniżanie potrzeby glikolu. Ponadto, nieprecyzyjne przeliczenia dotyczące długości rur i ich pojemności mogą skutkować poważnymi niedoborami cieczy w systemie, co z kolei może wpływać na jego funkcjonowanie. Zastosowanie nieodpowiednich ilości płynów może prowadzić do problemów z efektywnością cieplną oraz ryzykiem uszkodzeń w przypadku niskich temperatur. Dlatego istotne jest, aby zawsze sumować wszystkie objętości do obliczeń, w tym pojemności kolektorów, zasobników, grup pompowych oraz rur, co jest zgodne z najlepszymi praktykami w dziedzinie instalacji solarnych. Prawidłowe obliczenia zapewniają nie tylko efektywność, ale również bezpieczeństwo i niezawodność całego systemu.