Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 6 marca 2025 22:52
  • Data zakończenia: 6 marca 2025 23:21

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką masę siarczanu(VI) miedzi(II)-woda(1/5) należy poddać suszeniu, aby otrzymać 300 g soli bezwodnej?

CuSO4 · 5H2O → CuSO4 + 5H2O
(MCuSO4·5H2O = 249,5 g/mol, MCuSO4 = 159,5 g/mol, MH2O = 18,0 g/mol)
A. 584,1 g
B. 390,5 g
C. 469,3 g
D. 210,0 g
Odpowiedź 469,3 g jest prawidłowa, ponieważ obliczenia opierają się na stosunku mas molowych soli bezwodnej i uwodnionej. Siarczan(VI) miedzi(II) w postaci uwodnionej (CuSO4·5H2O) zawiera cząsteczki wody, które muszą zostać usunięte podczas procesu suszenia, aby uzyskać sól bezwodną (CuSO4). Masy molowe: CuSO4 wynoszą około 159,61 g/mol, a CuSO4·5H2O to 249,68 g/mol. Stosując proporcje, można ustalić, że masa siarczanu(VI) miedzi(II)-woda, potrzebna do uzyskania 300 g soli bezwodnej, wynosi około 469,3 g. Praktyczne zastosowanie tej wiedzy jest istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów i soli jest kluczowe dla uzyskania wiarygodnych wyników badań. Dobre praktyki laboratoryjne sugerują, aby zawsze przeprowadzać obliczenia masy przed rozpoczęciem doświadczenia, co pozwala uniknąć błędów i strat materiałowych.

Pytanie 2

Z partii materiału należy pobrać ogólną próbkę w ilości odpowiadającej promilowi całej partii. Na podstawie podanej informacji określ, ile pierwotnych próbek, każda ważąca 10 g, trzeba pobrać z partii cukru o masie 0,5 t, aby uzyskać reprezentatywną próbkę ogólną?

A. 10
B. 50
C. 100
D. 5
Aby uzyskać reprezentatywną próbkę ogólną z partii cukru o masie 0,5 t (czyli 500 kg), należy zastosować zasadę pobierania próbek o odpowiedniej masie. Zgodnie z normami i wytycznymi, w przypadku materiałów takich jak cukier, zaleca się, aby próbka ogólna stanowiła co najmniej 0,1% całkowitej masy partii. W przypadku 500 kg, 0,1% wynosi 0,5 kg, co odpowiada 500 g. Jeśli każda próbka pierwotna ma masę 10 g, to aby uzyskać 500 g, potrzebujemy 50 próbek (500 g / 10 g = 50). Takie podejście zapewnia, że próbka ogólna będzie odzwierciedlać rzeczywistą homogeniczność partii, co jest kluczowe w kontekście zapewnienia jakości i zgodności z normami bezpieczeństwa żywności. W praktyce, odpowiednie pobieranie próbek ma kluczowe znaczenie w procesach kontroli jakości, analizy i certyfikacji produktów spożywczych.

Pytanie 3

Deminimalizowaną wodę można uzyskać przez

A. destylację prostą
B. destylację próżniową
C. filtrację
D. wymianę jonową
Woda demineralizowana to woda, z której usunięto wszystkie lub prawie wszystkie rozpuszczone sole mineralne. Jednym z najskuteczniejszych sposobów jej pozyskania jest wymiana jonowa. Proces ten polega na użyciu żywic jonowymiennych, które są zdolne do wymiany jonów w roztworze. Kiedy woda przepływa przez kolumnę wypełnioną żywicą, jony niepożądane (takie jak Ca²⁺, Mg²⁺ czy Na⁺) są zastępowane przez jony H⁺ lub OH⁻, co prowadzi do powstania czystej wody. Wymiana jonowa jest szczególnie istotna w przemyśle farmaceutycznym, gdzie woda demineralizowana jest używana jako rozpuszczalnik w procesach produkcyjnych oraz w laboratoriach analitycznych, gdzie czystość wody jest kluczowa dla dokładności wyników. Warto zauważyć, że ta metoda jest często preferowana w porównaniu do innych technik, ponieważ skutecznie eliminuje zarówno aniony, jak i kationy. Dążenie do uzyskania wody o wysokiej czystości chemicznej jest zgodne z normami ISO 3696, które definiują wymagania dla wody do zastosowań laboratoryjnych.

Pytanie 4

Etykiety chemikaliów zawierają zwroty H, które informują o rodzaju zagrożenia. Cyfra "3" pojawiająca się po literze "H" w oznaczeniu, definiuje rodzaj zagrożenia?

A. dla środowiska
B. dla człowieka
C. chemiczne
D. fizyczne
Odpowiedzi wskazujące na zagrożenie fizyczne, chemiczne lub dla środowiska są błędne, ponieważ nie odnoszą się bezpośrednio do zagrożeń, jakie substancje chemiczne mogą stwarzać dla zdrowia ludzi. Zrozumienie różnicy między tymi zagrożeniami jest kluczowe w kontekście bezpieczeństwa chemicznego. Zagrożenia fizyczne dotyczą cech substancji, takich jak łatwopalność, wybuchowość lub reakcje z innymi chemikaliami, które mogą prowadzić do niebezpiecznych sytuacji w warunkach pracy. Z kolei zagrożenia chemiczne odnoszą się do właściwości substancji, które wpływają na jej stabilność i reakcje chemiczne, co może prowadzić do uwolnienia toksycznych gazów bądź tworzenia niebezpiecznych odpadów. Natomiast zagrożenie dla środowiska dotyczy wpływu substancji na ekosystemy, takie jak zanieczyszczenie wód czy gleby. W praktyce, skupienie się na tych aspektach, zamiast na zagrożeniach dla zdrowia ludzkiego, może prowadzić do niewłaściwego stosowania środków ochrony osobistej, co zwiększa ryzyko wypadków w miejscu pracy. Używanie etykiet i zwrotów H jest bardzo istotne, aby zapewnić odpowiednią informację o potencjalnym zagrożeniu zdrowotnym dla pracowników oraz ułatwić przestrzeganie norm BHP.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Dokonano pomiaru pH dwóch roztworów, uzyskując wartości pH= 2 oraz pH= 5. Wskaźnij poprawnie sformułowany wniosek.

A. Stężenie jonów [H+] w roztworze o pH= 5 jest 1000 razy wyższe niż w roztworze o pH = 2
B. Stężenie jonów [H+] w roztworze o pH= 5 jest 1000 razy mniejsze niż w roztworze o pH = 2
C. Stężenie jonów [H+] w roztworze o pH= 5 jest większe o 3 mol/dm3 niż w roztworze o pH = 2
D. Stężenie jonów [H+] w roztworze o pH= 5 jest trzykrotnie mniejsze niż w roztworze o pH = 2
Niezrozumienie konsekwencji skali pH prowadzi do błędnych wniosków. W przypadku stwierdzenia, że stężenie jonów [H+] w roztworze o pH=5 jest 3 razy mniejsze niż w roztworze o pH=2, pomija się kluczowy fakt o logarytmicznej naturze skali pH. Zmiana pH o jednostkę oznacza dziesięciokrotną różnicę w stężeniu jonów, co tworzy mylne przekonanie, że różnice są liniowe. W konsekwencji, jeśli pH zmienia się z 2 na 5, stężenie [H+] nie zmniejsza się o 3, ale o 1000 razy. Twierdzenie, że stężenie w roztworze pH=5 jest 1000 razy większe niż w pH=2, także jest błędne, ponieważ ignoruje właściwości pH jako miary stężenia jonów. Odpowiedź sugerująca, że stężenie w roztworze o pH=5 jest większe o 3 mol/dm3 niż w pH=2, wskazuje na brak zrozumienia skali i jednostek. W rzeczywistości różnice te nie są mierzone w molach, ale w proporcjach logarytmicznych. Błędem jest również myślenie, że takie zmiany można analizować w sposób prosty, liniowy, co jest sprzeczne z podstawowymi zasadami chemii kwasowo-zasadowej. Aby unikać takich nieporozumień, należy stosować dokładne obliczenia oparte na logarytmach oraz zrozumienie, jak pH wpływa na różne procesy chemiczne i biologiczne.

Pytanie 7

Zastosowanie łaźni wodnej nie jest zalecane w trakcie prac, w których stosuje się

A. sód
B. glicerynę
C. cynk
D. etanol
Odpowiedź 'sodu' jest prawidłowa, ponieważ sód reaguje gwałtownie z wodą, co prowadzi do wydzielania wodoru i może spowodować niebezpieczne eksplozje. Z tego powodu, podczas prac związanych z sodem, stosowanie łaźni wodnej jest całkowicie niewskazane. W praktyce, jeśli zajmujesz się sodem, powinieneś używać innych metod chłodzenia lub podgrzewania, takich jak piekarniki lub inne systemy grzewcze, które nie wchodzą w reakcję z tym pierwiastkiem. W laboratoriach chemicznych i podczas produkcji chemikaliów, standardy bezpieczeństwa, takie jak te określone przez OSHA (Occupational Safety and Health Administration) oraz EPA (Environmental Protection Agency), zalecają unikanie kontaktu sodu z wodą. Dlatego ważne jest, aby stosować odpowiednie materiały i metody pracy, aby uniknąć potencjalnych wypadków i zapewnić bezpieczeństwo w miejscu pracy.

Pytanie 8

Proces oddzielania mieszaniny niejednorodnej, który zachodzi w wyniku opadania cząstek pod działaniem grawitacji, nazywamy

A. dekantacja
B. hydratacja
C. sedymentacja
D. absorpcja
Sedymentacja to proces fizyczny, w którym cząstki stałe w zawiesinie opadają na dno pod wpływem siły grawitacji. Jest to kluczowy mechanizm w wielu dziedzinach, takich jak inżynieria środowiska, geologia czy chemia analityczna. W praktyce sedymentacja jest wykorzystywana do oczyszczania ścieków, gdzie cząstki stałe są usuwane z cieczy, co pozwala na oczyszczenie wody. Dobrą praktyką w analizach chemicznych jest zastosowanie sedymentacji w etapach przygotowania próbek, co pozwala na wyizolowanie cząstek osadowych i ich dalsze badanie. Proces ten jest również podstawą wielu technologii, takich jak separacja i recykling materiałów, gdzie skuteczne oddzielanie składników jest kluczowe dla efektywności całego procesu produkcyjnego. W kontekście norm i regulacji, aplikacje sedymentacji muszą spełniać odpowiednie standardy jakości, co gwarantuje bezpieczeństwo i efektywność działań przemysłowych.

Pytanie 9

Z uwagi na bezpieczeństwo pracy, ciecze żrące powinny być podgrzewane w łaźniach

A. olejowych
B. piaskowych
C. wodnych
D. powietrznych
Ogrzewanie cieczy żrących na łaźniach piaskowych to dobra opcja, bo piasek świetnie izoluje i rozprowadza ciepło. Dzięki temu mamy stabilne warunki, co jest bardzo ważne, zwłaszcza przy substancjach, które mogą się 'dziwnie' zachowywać, gdy temperatura szybko się zmienia. W praktyce użycie łaźni piaskowych zmniejsza ryzyko przegrzewania, co jest super istotne, bo może prowadzić do różnych nieprzyjemnych sytuacji, jak dekompozycja czy toksyczne opary. Piasek nie tylko grzeje, ale i chroni operatora. W laboratoriach chemicznych oraz w różnych branżach, gdzie obsługuje się cieczy żrące, przestrzeganie zasad BHP i stosowanie odpowiednich metod ogrzewania jest kluczowe, aby zapewnić bezpieczne warunki pracy i ochronić zdrowie. To są sprawy, które powinny być zawsze na pierwszym miejscu, a dokumenty branżowe mocno to podkreślają.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

W jakim celu używa się kamyczków wrzenne w trakcie długotrwałego podgrzewania cieczy?

A. Uniknięcia miejscowego przegrzewania się cieczy
B. Zwiększenia powierzchni kontaktu faz w celu przyspieszenia reakcji
C. Zwiększenia temperatury wrzenia cieczy
D. Obniżenia temperatury wrzenia cieczy
Wydaje mi się, że to, co napisałeś, nie do końca jest prawdą. Podnoszenie temperatury wrzenia cieczy przez kamyczki wrzenne to nie do końca dobre podejście. W rzeczywistości ich działanie nie zmienia samej temperatury wrzenia, bo to jest bardziej związane z ciśnieniem i składem cieczy. Jeżeli chciałbyś podnieść temperaturę wrzenia, musiałbyś użyć innych metod, jak na przykład zwiększenie ciśnienia. Poza tym, nie da się obniżyć temperatury wrzenia z użyciem kamyczków – one po prostu nie mają takiej funkcji. Zwiększenie powierzchni kontaktu faz jest ważne, ale nie ma to bezpośredniego związku z tym, do czego służą kamyczki wrzenne. Generalnie, wyniki, które nie są zgodne, wynikają z tego, że może nie do końca rozumiesz, jak działają kamyczki i ich wpływ na procesy fizykochemiczne. Może warto by było poczytać o podstawach termodynamiki lub zasadach prowadzenia reakcji chemicznych, to mogłoby pomóc lepiej zrozumieć, co się dzieje, gdy podgrzewasz ciecz.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Który z poniższych czynników nie mógł przyczynić się do błędnego określenia całkowitej liczby drobnoustrojów w surowym mleku?

A. Nieprawidłowe czyszczenie i dezynfekcja pipet do pobierania próbek pierwotnych
B. Nieodpowiednie mycie i dezynfekcja zbiorników do przechowywania mleka
C. Pobranie nadmiernej liczby próbek pierwotnych
D. Transport próbki mleka w temperaturze 30°C
Pobranie zbyt dużej liczby próbek pierwotnych nie wpływa na błędne oznaczenie ogólnej liczby drobnoustrojów w surowym mleku, ponieważ standardowe procedury analityczne zakładają, że próba powinna być reprezentatywna dla całej partii, a niekoniecznie musi być ograniczona do określonej liczby próbek. W praktyce laboratoria często pobierają wiele próbek w celu zwiększenia dokładności wyników, jednak kluczowe jest, aby każda próbka była odpowiednio przechowywana i transportowana zgodnie z ustalonymi normami. Dobrą praktyką jest stosowanie systemu losowego przy pobieraniu próbek, co pozwala na lepsze odwzorowanie rzeczywistego stanu mikrobiologicznego całej partii mleka. W przypadku dużej liczby próbek zaleca się ich równoległe analizowanie, co może zwiększyć precyzję wyników końcowych. Ponadto, zgodnie z zaleceniami organizacji takich jak Codex Alimentarius, należy przestrzegać surowych norm dotyczących transportu i przechowywania próbek, aby uniknąć zafałszowania wyników z powodu czynników zewnętrznych.

Pytanie 15

Preparaty zawierające KOH (tzw. żrący potaż), oznaczone są symbolem S 1/2. Na podstawie informacji zawartych w tabeli, określ zasady przechowywania tych preparatów.

Numer zwrotu SWarunki bezpiecznego stosowaniaNumer zwrotu SWarunki bezpiecznego stosowania
S1Przechowywać pod zamknięciemS12Nie przechowywać pojemnika szczelnie zamkniętego
S2Chronić przed dziećmiS13Nie przechowywać razem z żywnością, napojami i karmą dla zwierząt
S3Przechowywać w chłodnym miejscuS15Przechowywać z dala od źródeł ciepła
S4Nie przechowywać w pomieszczeniach mieszkalnychS16Nie przechowywać w pobliżu źródeł zapłonu – nie palić tytoniu
A. Przechowywać w zamkniętym, chłodnym miejscu.
B. Nie przechowywać w szczelnie zamkniętym pojemniku.
C. Przechowywać w zamknięciu, z daleka od dzieci.
D. Przechowywać z dala od źródeł ciepła i ognia.
Odpowiedź 'Przechowywać w zamknięciu, z daleka od dzieci.' jest zgodna z obowiązującymi normami bezpieczeństwa oraz zasadami przechowywania substancji chemicznych. Preparaty zawierające KOH, klasyfikowane jako substancje niebezpieczne, wymagają szczególnych środków ostrożności. Symbol S1 wskazuje, że powinny być one przechowywane w zamknięciu, co ma na celu minimalizację ryzyka przypadkowego dostępu do nich. Z kolei symbol S2 podkreśla konieczność ochrony przed dziećmi, co jest kluczowe, aby zapobiec nieszczęśliwym wypadkom. W praktyce oznacza to, że substancje te powinny być składowane w miejscach niedostępnych dla osób postronnych, zwłaszcza dzieci, oraz w odpowiednich pojemnikach, które zapobiegają ich przypadkowemu otwarciu. Dobre praktyki w laboratoriach i gospodarstwach domowych sugerują, aby takie preparaty były trzymane w zamkniętych szafkach z dodatkowymi zabezpieczeniami, co dodatkowo zwiększa bezpieczeństwo. Właściwe przechowywanie nie tylko chroni zdrowie, ale również minimalizuje ryzyko zanieczyszczenia środowiska.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Aby podnieść temperaturę roztworu do 330 K, jakie wyposażenie jest potrzebne?

A. statywu, siatki, zlewki, termometru z zakresem temperatur 0+100°C
B. trójnogu, siatki ceramicznej, zlewki, termometru z zakresem temperatur 0--0°C
C. statywu, siatki, zlewki, termometru z zakresem temperatur 0--50°C
D. trójnogu, siatki ceramicznej, zlewki, termometru z zakresem temperatur 0-+100°C
Poprawna odpowiedź to wykorzystanie trójnogu, siatki ceramicznej, zlewki oraz termometru z zakresem temperatur 0-+100°C. Ta konfiguracja jest właściwa, ponieważ umożliwia bezpieczne i efektywne ogrzewanie roztworu do wymaganej temperatury 330 K (około 57°C). Trójnóg zapewnia stabilność podczas ogrzewania, co jest kluczowe w laboratoriach, gdzie bezpieczeństwo jest priorytetem. Siatka ceramiczna rozkłada ciepło równomiernie, co minimalizuje ryzyko lokalnych przegrzań, które mogą prowadzić do niepożądanych reakcji chemicznych. Użycie zlewki do podgrzewania roztworu jest standardową praktyką, ponieważ zlewki wykonane z odpowiednich materiałów (np. szkło borokrzemowe) są odporne na zmiany temperatury. Termometr z zakresem 0-+100°C jest odpowiedni do monitorowania temperatury, ponieważ pozwala na bezpieczne kontrolowanie wzrostu temperatury roztworu w bezpiecznym zakresie, nie przekraczającym maksymalnej temperatury mierzonej przez termometr. W laboratoriach chemicznych kluczowe jest przestrzeganie standardów bezpieczeństwa oraz stosowanie odpowiednich narzędzi, co zapewnia nie tylko dokładność eksperymentów, ale również ochronę przed zagrożeniami związanymi z wysoką temperaturą.

Pytanie 19

Podczas analizowania zmienności składu wód płynących w skali rocznej, próbki wody powinny być zbierane i badane przynajmniej raz na

A. tydzień
B. rok
C. miesiąc
D. pół roku
Prawidłowa odpowiedź to pobieranie próbek wody co najmniej raz w miesiącu, co jest zgodne z najlepszymi praktykami w monitorowaniu jakości wód. Badania takie pozwalają na uchwycenie sezonowych zmian w składzie chemicznym i biologicznym wody, które mogą być wynikiem zmieniających się warunków pogodowych, działalności rolniczej lub przemysłowej oraz naturalnych cykli ekosystemu. Stosowanie miesięcznych interwałów pobierania próbek jest standardem w wielu programach monitorowania ekologicznego, ponieważ umożliwia dokładne śledzenie dynamiki zmian oraz identyfikację potencjalnych zagrożeń dla ekosystemu wodnego. Przykładowo, w przypadku rzek czy jezior, różne pory roku mogą wpływać na stężenia składników odżywczych, co ma kluczowe znaczenie dla zdrowia biocenozy. Regularne badania w odstępach miesięcznych wspierają nie tylko prawidłową ocenę jakości wody, ale także umożliwiają szybką reakcję na zmiany, które mogą być wynikiem zanieczyszczeń lub innych niekorzystnych zjawisk.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Wapno palone uzyskuje się poprzez prażenie wapienia według równania: CaCO3 → CaO + CO2. Ile kilogramów wapienia należy zastosować, aby w efekcie jego prażenia otrzymać 7 kg wapna palonego, jeśli wydajność reakcji wynosi 50%?
Masy molowe: MCa = 40 g/mol, MC = 12 g/mol, MO = 16 g/mol.

A. 25,0 kg
B. 12,5 kg
C. 37,5 kg
D. 50,0 kg
Wybór niewłaściwej odpowiedzi często wynika z błędnego zrozumienia zachodzących procesów chemicznych oraz pomieszania koncepcji wydajności reakcji i ilości reagentu. Przykładowo, podanie 50 kg wapnia palonego jako odpowiedzi może sugerować, że respondenci nie uwzględnili wydajności reakcji. W rzeczywistości, wydajność 50% oznacza, że tylko połowa teoretycznie uzyskanych produktów reakcji jest pozyskiwana. Z tego powodu, aby uzyskać 7 kg wapna palonego, najpierw należałoby obliczyć, ile CaCO3 jest potrzebne, przy założeniu, że 100% wydajność dostarczyłaby 14 kg. Następnie, uwzględniając wydajność, trzeba pomyśleć o tym, że do uzyskania takiej ilości trzeba podwoić ilość węglanu wapnia. Osoby dokonujące obliczeń mogą również popełnić błąd w obliczeniach mas molowych, co może prowadzić do mylnych wyników. Kolejnym typowym błędem jest ignorowanie jednostek miary, gdzie niektórzy mogą skupić się tylko na samych liczbach, zapominając, że kilogramy i gramy to różne jednostki. Zrozumienie tego aspektu jest kluczowe w praktycznych zastosowaniach chemii, gdzie precyzyjne pomiary są niezbędne dla uzyskania pożądanych efektów reakcji chemicznych.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

W trakcie określania miana roztworu NaOH, do zmiareczkowania 25,0 cm3 tego roztworu, użyto 30,0 cm3 roztworu HCl o stężeniu 0,1000 mol/dm3. Jakie miało miano zasady?

A. 0,1200 mol/dm3
B. 0,1000 mol/dm3
C. 0,1500 mol/dm3
D. 0,2000 mol/dm3
Wiele osób może nie dostrzegać, że poprawne obliczenia miana roztworu NaOH opierają się na znajomości stoichiometrii reakcji chemicznych oraz zrozumieniu, jak stosunki molowe wpływają na obliczenia. Wybrane odpowiedzi, takie jak 0,1000 mol/dm³, mogą sugerować błędne założenie, że miano NaOH odpowiada stężeniu HCl, co jest nieprawidłowe. Odpowiedzi wskazujące na miano 0,1500 mol/dm³ lub 0,2000 mol/dm³ mogą wynikać z błędnego przeliczenia objętości reagenta lub pomyłki w stosunku molowym. W praktyce, takie błędy są częste, gdy osoby nie biorą pod uwagę, że w reakcji neutralizacji między NaOH a HCl dochodzi do wymiany moli zgodnie z równaniem 1:1. Dlatego kluczowe jest, aby w obliczeniach uwzględniać zarówno objętości, jak i właściwe stężenia reagentów. Typowymi pułapkami są również błędy w jednostkach, gdzie pomijanie konwersji cm³ na dm³ prowadzi do nieprawidłowych wyników. Niewłaściwe zrozumienie reakcji chemicznych oraz ich stoichiometrii może skutkować fałszywymi wynikami, co w kontekście analitycznym jest niedopuszczalne. Rekomendacje branżowe sugerują regularne sprawdzanie obliczeń oraz stosowanie wzorców referencyjnych, aby zapewnić prawidłowość wyników, co jest niezwykle istotne w laboratoriach badawczych i przemysłowych.

Pytanie 24

W jakiej standardowej temperaturze są kalibrowane szklane naczynia pomiarowe?

A. 25°C
B. 19°C
C. 21°C
D. 20°C
Odpowiedzi 19°C, 25°C oraz 21°C są niepoprawne w kontekście standardowych praktyk kalibracji szklanych naczyń miarowych. Kalibracja w temperaturze 19°C może wydawać się logiczna, jednak nie jest zgodna z powszechnie przyjętymi normami. Podobnie, 25°C, chociaż często stosowane w niektórych aplikacjach, prowadzi do nieścisłości, ponieważ cieczy w temperaturze 25°C mogą wykazywać różnice w objętości w porównaniu do standardowych pomiarów. Wysoka temperatura może również wpływać na zachowanie niektórych materiałów, co dodatkowo komplikuje pomiary. Z kolei 21°C, mimo że znajduje się blisko wartości standardowej, nie spełnia wymogów precyzyjnych pomiarów wymaganych w laboratoriach, gdzie każdy stopień Celsjusza może prowadzić do błędów w obliczeniach. Typowym błędem myślowym jest założenie, że niewielkie odchylenie od standardu nie ma znaczenia. W praktyce, nawet małe różnice w temperaturze mogą prowadzić do poważnych nieścisłości, co podkreśla konieczność stosowania kalibracji w 20°C dla zapewnienia dokładności i powtarzalności wyników. Warto zauważyć, że standardy ISO oraz normy branżowe jednoznacznie wskazują na 20°C jako optymalną temperaturę dla kalibracji, co jest kluczowe dla osiągnięcia wiarygodnych wyników w pomiarach laboratoryjnych.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Ogrzewanie organicznych substancji w atmosferze powietrza w otwartym naczyniu, mające na celu przemianę tych substancji w związki nieorganiczne, określa się jako mineralizacja?

A. na sucho
B. na mokro
C. UV
D. mikrofalową
Odpowiedź "na sucho" jest prawidłowa, ponieważ mineralizacja substancji organicznej w atmosferze powietrza polega na utlenianiu tych substancji w warunkach braku wody. Proces ten jest stosowany w różnych dziedzinach, takich jak przemysł biopaliwowy, gdzie organiczne odpady są przekształcane w użyteczne substancje, jak biometan. Mineralizacja ma kluczowe znaczenie w cyklu nutrientów w ekosystemach, gdzie przyczynia się do uwalniania składników odżywczych do gleby, co jest istotne dla wzrostu roślin. Dobrze zorganizowany proces mineralizacji pozwala na efektywne zarządzanie odpadami organicznymi, zmniejszając ich wpływ na środowisko. W kontekście standardów branżowych, uwzględnienie metod mineralizacji w zarządzaniu odpadami organicznymi jest częścią dobrych praktyk, które podkreślają znaczenie recyklingu i ponownego wykorzystania zasobów.

Pytanie 28

Aby uzyskać roztwór AgNO3 (masa molowa AgNO3 to 169,8 g/mol) o stężeniu 0,1 mol/dm3, należy rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski.

A. odważyć 16,98 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
B. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
C. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
D. odważyć 169,80 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić
Odpowiedź jest poprawna, ponieważ przygotowanie roztworu o stężeniu 0,1 mol/dm³ wymaga precyzyjnego odmierzania substancji chemicznych. Aby uzyskać roztwór o pojemności 100 cm³ i stężeniu 0,1 mol/dm³, należy obliczyć ilość AgNO₃ potrzebną do przygotowania takiego roztworu. Masa molowa AgNO₃ wynosi 169,8 g/mol, więc dla 0,1 mol/dm³ w 100 cm³ (0,1 dm³) potrzeba 0,01 mola tej substancji. Zatem 0,01 mola x 169,8 g/mol daje 1,698 g AgNO₃. Przeniesienie odważonej ilości do kolby miarowej o pojemności 100 cm³ i rozpuszczenie w wodzie destylowanej oraz uzupełnienie do kreski zapewnia, że otrzymujemy dokładnie przygotowany roztwór o wymaganym stężeniu. Tego rodzaju praktyka jest zgodna z najlepszymi praktykami w laboratoriach chemicznych, gdzie precyzja i dokładność są kluczowe dla uzyskania wiarygodnych wyników analitycznych.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Przy przygotowywaniu 100 cm3 roztworu o określonym stężeniu procentowym (m/V) konieczne jest odważenie wyliczonej ilości substancji, a następnie przeniesienie jej do

A. kolby miarowej, dodać 100 cm3 rozpuszczalnika, wymieszać, opisać
B. kolby miarowej, rozpuścić, uzupełnić kolbę rozpuszczalnikiem do kreski, wymieszać, opisać
C. zlewki, rozpuścić w 100 cm3 rozpuszczalnika, opisać, wymieszać bagietką
D. zlewki, rozpuścić w 100 cm3 rozpuszczalnika, przenieść do kolby miarowej, opisać
Zastosowanie zlewki w procesie przygotowywania roztworów może prowadzić do licznych problemów pomiarowych i nieprecyzyjnych rezultatów. Zlewki, choć są użyteczne do ogólnych operacji laboratoryjnych, nie zapewniają odpowiedniej dokładności w pomiarach objętości. Nie mają one podziałek, które pozwalałyby na precyzyjne odmierzenie potrzebnych ilości rozpuszczalnika. Ponadto, rozpuszczenie substancji w 100 cm³ rozpuszczalnika w zlewce nie gwarantuje, że końcowy roztwór będzie miał pożądane stężenie. W momencie przenoszenia roztworu do kolby miarowej, możliwe jest, że niecała objętość roztworu zostanie przetransportowana, co prowadzi do błędnych obliczeń. Dodatkowo, takie podejście może być wprowadzające w błąd, ponieważ nie uwzględnia się zasady dopełniania kolby do kreski, co jest kluczowe dla uzyskania dokładnego stężenia. Wiele osób może pomylić przygotowanie roztworu zlewce z kolbą miarową, co jest typowym błędem myślowym. W laboratoriach stosuje się konkretne protokoły, które podkreślają znaczenie użycia odpowiednich narzędzi do precyzyjnego przygotowania roztworów, a niewłaściwy wybór sprzętu może prowadzić do nieprawidłowych wyników badań chemicznych i analiz.

Pytanie 32

Symbol "In" znajduje się na

A. pipetach i oznacza sprzęt kalibrowany "na wylew"
B. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wlew"
C. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wylew"
D. biuretach i oznacza sprzęt kalibrowany "na wlew"
Zauważyłem, że wybrałeś odpowiedź, która nie do końca jest poprawna. Wydaje mi się, że mogłeś się pomylić w kwestii kalibracji sprzętu. Pipety są używane do precyzyjnego przenoszenia cieczy, ale to kolby miarowe mają symbol 'In' i są kalibrowane 'na wlew'. Mylisz je z pipetami, co może wprowadzać w błąd. Kolby miarowe nie są kalibrowane 'na wylew', bo to nie ich przeznaczenie. Dobrze jest zrozumieć, jak różne sprzęty działają, bo to wpływa na wyniki. Prawidłowe stosowanie narzędzi w laboratorium jest kluczowe. Jak się nie zrozumie tych szczegółów, można sobie narobić kłopotów w eksperymentach.

Pytanie 33

Podstawowy zestaw do filtracji, oprócz statywu i sączka, obejmuje

A. lejka, kolby stożkowej, zlewki
B. lejka, 2 zlewki, bagietki
C. lejka, zlewki, 2 bagietek
D. lejka, 2 kolb stożkowych, bagietki
Odpowiedź 'z lejka, 2 zlewek, bagietki' jest prawidłowa, ponieważ podstawowy zestaw do sączenia rzeczywiście obejmuje te elementy. Lejek jest niezbędny do precyzyjnego kierowania cieczy do naczynia, co zapobiega rozlaniu i zapewnia czystość eksperymentu. Zlewki są kluczowe, gdyż jedna jest używana do przechwytywania cieczy podczas sączenia, a druga do gromadzenia płynów, które mogą być użyte w dalszym etapie analizy. Bagietki, znane również jako pipety, są używane do precyzyjnego przenoszenia niewielkich objętości substancji, co jest niezwykle ważne w laboratoriach chemicznych i biologicznych. Poprawne wykorzystanie tego zestawu zapewnia zgodność z dobrymi praktykami laboratoryjnymi, a także ułatwia zrozumienie procesów chemicznych i biologicznych. Przykładem może być ich zastosowanie w filtracji, gdzie odpady są usuwane, a czysta ciecz zbierana do zlewki, co jest kluczowe w wielu procedurach analitycznych.

Pytanie 34

Temperatura wrzenia aniliny przy normalnym ciśnieniu wynosi 457,13 K. W trakcie jej oczyszczania metodą destylacji prostej pod ciśnieniem atmosferycznym należy zebrać frakcję wrzącą w przedziale temperatur

A. 178 °C - 182 °C
B. 185 °C - 190 °C
C. 181 °C - 185 °C
D. 175 °C - 179 °C
Wybór zakresów temperatur innych niż 181 °C - 185 °C wynika z kilku nieporozumień związanych z podstawowymi zasadami destylacji. Często zdarza się, że osoby mające do czynienia z destylacją nie uwzględniają dokładnie wartości wrzenia substancji, co prowadzi do błędnych interpretacji. Na przykład, odpowiedzi sugerujące zakresy 185 °C - 190 °C lub 178 °C - 182 °C bazują na niewłaściwych założeniach dotyczących temperatury wrzenia aniliny. W rzeczywistości, jeżeli temperatura wrzenia wynosi 184 °C, wówczas frakcje przed i po tej wartości będą zawierały znaczny procent zanieczyszczeń, co może prowadzić do obniżenia jakości uzyskiwanego destylatu. Innym typowym błędem myślowym jest zakładanie, że temperatura wrzenia jest jedynym czynnikiem decydującym o zakresie zbierania frakcji podczas destylacji. W praktyce, inne czynniki, takie jak ciśnienie atmosferyczne, mogą wpływać na pomiar temperatur. Właściwe dobieranie zakresów zbierania frakcji jest kluczowe, aby uniknąć strat substancji czynnej i zapewnić ich czystość. Kluczowe jest również zrozumienie, że w przypadku substancji chemicznych, takich jak anilina, istotne jest przestrzeganie standardów laboratoryjnych oraz dobrych praktyk w celu uzyskania optymalnych wyników destylacji.

Pytanie 35

Wodę do badań mikrobiologicznych powinno się pobierać do butelek

A. zanurzonych wcześniej na 2-3 minuty w alkoholu etylowym
B. umytych wodorotlenkiem sodu
C. starannie wypłukanych, na przykład po niegazowanej wodzie mineralnej
D. sterylnych
Pobieranie próbek wody do badań mikrobiologicznych powinno odbywać się wyłącznie w sterylnych butelkach, co ma kluczowe znaczenie dla uzyskania wiarygodnych wyników. Sterylność opakowania eliminuje ryzyko kontaminacji próbki przez mikroorganizmy z otoczenia. W praktyce, butelki do pobierania wody mikrobiologicznej są zazwyczaj produkowane z materiałów, które można wysterylizować, a ich zamknięcia są zaprojektowane tak, aby zapobiegać wszelkim kontaktom z zanieczyszczeniami. Ponadto, w przypadku badań mikrobiologicznych, takie wymagania są zgodne z normami, takimi jak ISO 5667, które określają procedury pobierania wody. Użycie sterylnych pojemników jest szczególnie istotne, gdyż mikroorganizmy mogą być obecne w różnych formach, a nawet niewielka ilość zanieczyszczeń może prowadzić do fałszywych wyników. Dlatego w laboratoriach oraz w trakcie inspekcji sanitarno-epidemiologicznych stosuje się ściśle określone procedury, aby zapewnić wysoką jakość i wiarygodność badań.

Pytanie 36

Aby oszacować czystość MgCO3, poddano prażeniu próbkę o wadze 5 g tej soli aż do osiągnięcia stałej masy. W trakcie prażenia zachodzi reakcja:
MgCO3 → MgO + CO2 Całkowity ubytek masy wyniósł 2,38 g.
(Masy molowe reagentów to: MgCO3 – 84 g/mol, MgO – 40 g/mol, CO2 – 44 g/mol) Jaką czystość miała próbka węglanu magnezu?

A. około 50% czystej substancji
B. 90,7% czystej substancji
C. 100% czystej substancji
D. bliżej nieokreśloną masę domieszek
Analizując inne odpowiedzi, istotne jest zrozumienie, dlaczego niektóre z nich są błędne. Wskazanie, że węglan magnezu zawiera około 50% czystej substancji, jest nieuzasadnione, gdyż nie uwzględnia rzeczywistego ubytku masy podczas prażenia. Przykładowo, pominięcie obliczeń ilości powstałego CO2 prowadzi do znacznego zaniżenia jakości próbki. Z kolei stwierdzenie, że węglan magnezu zawiera 100% czystej substancji, jest nierealistyczne, ponieważ każda próbka chemiczna może zawierać zanieczyszczenia, a proces prażenia ujawnia ich obecność. Kolejna odpowiedź, mówiąca o bliżej nieokreślonej masie domieszek, sugeruje brak analizy ilościowej, co jest fundamentalnym błędem w chemii analitycznej. W praktyce laboratorium chemicznego, każda analiza powinna opierać się na solidnych obliczeniach i znajomości reakcji chemicznych. Często, błędy myślowe prowadzące do takich odpowiedzi wynikają z ignorowania relacji mas molowych oraz z podstawowych zasad stoichiometrii. Zrozumienie tych reguł jest kluczowe dla poprawnego przeprowadzania analiz chemicznych, co wpływa na jakość wyników oraz ich interpretację. Znajomość standardów analitycznych i dobrych praktyk w chemii pozwala uniknąć takich nieścisłości.

Pytanie 37

Odpady z rozpuszczalników organicznych, takich jak benzen czy aceton, zawierające co najmniej 80% danego rozpuszczalnika, należy

A. odprowadzać bezpośrednio do kanalizacji.
B. zniszczyć poprzez zastosowanie odpowiednich procesów.
C. połączyć z ziemią okrzemkową i przekazać do utylizacji.
D. poddać recyklingowi w celu odzyskania rozpuszczalnika.
Unieszkodliwienie odpadów z rozpuszczalników organicznych poprzez jakieś reakcje chemiczne może brzmieć fajnie, ale w przypadku tych z dużą zawartością rozpuszczalnika, jak benzen czy aceton, to jest mało efektywne i wręcz niebezpieczne. Recykling jest lepszą opcją. Chemiczne reakcje często są skomplikowane i kosztowne, a do tego mogą generować dodatkowe odpady i szkodliwe emisje. Mieszanie tych odpadów z ziemią okrzemkową też nie jest dobrym rozwiązaniem, bo to może prowadzić do zanieczyszczenia gleby i wód gruntowych, co z kolei narusza przepisy ochrony środowiska. Odprowadzanie ich do kanalizacji to totalna głupota, bo niesie ze sobą poważne problemy ekologiczne i prawne. Te odpady są niebezpieczne, więc trzeba z nimi ostrożnie postępować, żeby nie zaszkodzić zdrowiu ludzi i środowisku. Dlatego ważne jest, żeby trzymać się wytycznych dotyczących recyklingu i przepisów prawnych.

Pytanie 38

Związki chromu(VI) oddziałują negatywnie na środowisko, ponieważ

A. wykazują toksyczne działanie na organizmy żywe
B. prowadzą do zakwaszenia wód
C. stanowią główną przyczynę korozji urządzeń technicznych w wodzie
D. powodują nadmierny wzrost roślinności w zbiornikach wodnych
Związki chromu(VI), takie jak chromiany i dichromiany, są znane z ich wysokiej toksyczności dla organizmów żywych. Działają one na poziomie komórkowym, wpływając na różne procesy biochemiczne oraz powodując uszkodzenia DNA, co może prowadzić do nowotworów. Chrom(VI) jest szczególnie niebezpieczny, ponieważ ma zdolność do przenikania przez błony komórkowe i wywoływania reakcje oksydacyjne, które mogą prowadzić do stresu oksydacyjnego w komórkach. Z tego powodu substancje te są klasyfikowane jako substancje niebezpieczne i wymagają szczególnej ostrożności podczas transportu oraz przechowywania. W praktyce, w zakładach przemysłowych, gdzie stosuje się związki chromu(VI), należy wdrażać odpowiednie środki ochrony, takie jak systemy wentylacyjne, osobiste zabezpieczenia dla pracowników oraz ścisłe kontrole emisji do środowiska. Przykładem standardów, które regulują te kwestie, są normy ISO 14001 dotyczące zarządzania środowiskowego oraz dyrektywy unijne dotyczące substancji niebezpiecznych. Dzięki tym praktykom można minimalizować ryzyko związane z wykorzystaniem tych toksycznych substancji.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Gęstość cieczy w próbce określa się bezpośrednio za pomocą

A. kolorymetru
B. konduktometru
C. areometru
D. potencjometru
Areometr to urządzenie służące do pomiaru gęstości cieczy. Działa na zasadzie wyporu, co oznacza, że jego zasada działania opiera się na Archimedesie. Areometr jest zanurzany w cieczy, a jego zanurzenie jest proporcjonalne do gęstości tej cieczy. Im większa gęstość, tym mniejsze zanurzenie. To narzędzie jest powszechnie wykorzystywane w laboratoriach chemicznych, przemysłowych i w gospodarstwie domowym, na przykład do pomiaru gęstości roztworów cukru, alkoholu czy innych cieczy. W praktyce, areometry są kalibrowane do konkretnych temperatur, co jest ważnym aspektem ich użytkowania, ponieważ gęstość cieczy zmienia się wraz z temperaturą. Użycie areometru, zamiast innych urządzeń, jest zgodne z najlepszymi praktykami laboratoryjnymi, ponieważ zapewnia dokładne pomiary w różnych zastosowaniach, takich jak kontrola jakości w przemyśle spożywczym czy chemicznym.