Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 22 września 2025 22:28
  • Data zakończenia: 22 września 2025 22:55

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakimi drutami nawojowymi można nawinąć uszkodzony transformator, aby zachował swoje parametry elektryczne, jeśli nie ma się drutu o takim samym polu przekroju poprzecznego jak pierwotny?

A. O przekroju dwa razy mniejszym, połączonymi równolegle
B. O średnicy dwa razy mniejszej, połączonymi szeregowo
C. O przekroju dwa razy mniejszym, połączonymi szeregowo
D. O średnicy dwa razy mniejszej, połączonymi równolegle
Podczas analizy nieprawidłowych odpowiedzi warto zauważyć, że łączenie drutów o mniejszej średnicy szeregowo prowadzi do wzrostu całkowitej oporności, co w przypadku transformatora jest niekorzystne. Zwiększona oporność zmniejsza przepływ prądu, a tym samym powoduje spadek wydajności transformatora. W rezultacie, transformator może nie działać w optymalnych warunkach, co prowadzi do przegrzewania, a w skrajnych przypadkach do uszkodzeń. Z kolei stosowanie drutów o średnicy dwa razy mniejszej, połączonych równolegle, umożliwia zredukowanie oporności, co jest kluczowe dla efektywności działania. Dodatkowo, dobór drutów o polu przekroju poprzecznym, które jest dwa razy mniejsze, w połączeniu szeregowym, a nie równoległym, mógłby doprowadzić do nierównomiernego rozkładu prądów w zwojach, co jest niepożądane w kontekście równowagi elektromagnetycznej transformatora. Kluczowym błędem myślowym, który prowadzi do nieprawidłowych wniosków, jest nie uwzględnienie wpływu oporności na przepływ prądu oraz zniekształceń, jakie mogą wystąpić w wyniku niewłaściwego połączenia. W kontekście norm branżowych, w praktykach rewitalizacji transformatorów stosuje się przede wszystkim złote zasady dotyczące zachowania równowagi parametrów elektrycznych i mechanicznych, co jest absolutnie kluczowe dla długotrwałego działania i bezpieczeństwa urządzeń.

Pytanie 2

Do jakiego celu wykorzystuje się przełącznik w układzie gwiazda-trójkąt w zasilaniu silnika trójfazowego?

A. Aby poprawić przeciążalność
B. Aby obniżyć prędkość obrotową
C. Aby zredukować prąd rozruchowy
D. Aby zwiększyć moment rozruchowy
Przełącznik gwiazda-trójkąt jest powszechnie stosowany w układach zasilania silników trójfazowych w celu ograniczenia prądu rozruchowego. Kiedy silnik jest uruchamiany w układzie gwiazdy, napięcie na każdej fazie wynosi tylko 1/√3 (około 58%) napięcia międzyfazowego, co powoduje znaczące zmniejszenie prądu rozruchowego, który jest proporcjonalny do napięcia. Dzięki temu unika się przeciążenia sieci zasilającej oraz zmniejsza ryzyko uszkodzenia silnika. Po osiągnięciu odpowiednich obrotów, przełącznik zmienia połączenie na układ trójkąta, co pozwala na uzyskanie pełnej mocy silnika. Stosowanie przełącznika gwiazda-trójkąt jest zgodne z normami, takimi jak IEC 60034, które regulują zasady stosowania silników elektrycznych. W praktyce, ten system jest niezwykle przydatny w aplikacjach, w których wymagany jest wysoki moment rozruchowy, np. w młynach, dźwigach czy kompresorach, gdzie kontrola prądu podczas rozruchu jest kluczowa dla zapewnienia bezpiecznej i efektywnej pracy.

Pytanie 3

Jak, w przybliżeniu, zmieni się moc wydobywana przez grzejnik elektryczny, jeśli jego spiralę grzejną skróci się o połowę, a napięcie zasilania pozostanie niezmienione?

A. Zwiększy się dwukrotnie
B. Zmniejszy się czterokrotnie
C. Zwiększy się czterokrotnie
D. Zmniejszy się dwukrotnie
Odpowiedź jest prawidłowa, ponieważ moc wydzielana przez grzejnik elektryczny jest proporcjonalna do kwadratu napięcia zasilania i odwrotnie proporcjonalna do długości spirali grzejnej. Kiedy skracamy spiralę grzejną o połowę, jej rezystancja maleje, co powoduje, że prąd płynący przez nią wzrasta, przy niezmienionym napięciu. Zgodnie z prawem Ohma, moc P można wyrazić jako P = U²/R, gdzie U to napięcie, a R to rezystancja. Skrócenie spirali grzejnika o połowę wpływa na zmniejszenie rezystancji o połowę, co z kolei powoduje, że moc wydzielana przez grzejnik wzrasta dwukrotnie. Przykładowo, w zastosowaniach przemysłowych, gdy grzejniki są wykorzystywane do podgrzewania cieczy, zwiększenie mocy o 100% może znacząco wpłynąć na efektywność procesu grzewczego, co jest zgodne z zasadami optymalizacji energetycznej.

Pytanie 4

Na wartość impedancji pętli zwarcia w systemie TN-C wpływ mają

A. metoda ułożenia przewodów w instalacji
B. materiał izolacyjny przewodów
C. liczba przewodów umieszczonych w korytkach
D. przekrój żył przewodów
Wartość impedancji pętli zwarcia w sieci TN-C jest kluczowym parametrem, który wpływa na bezpieczeństwo instalacji elektrycznej. Przekrój żył przewodów ma bezpośredni wpływ na oporność elektryczną i tym samym na impedancję pętli zwarcia. Im większy przekrój przewodów, tym mniejsza ich oporność, co prowadzi do niższej wartości impedancji pętli. To z kolei pozytywnie wpływa na czas zadziałania zabezpieczeń nadprądowych, co jest zgodne z wymaganiami normy PN-IEC 60364. W praktyce, odpowiednio dobrany przekrój przewodów zapewnia, że w przypadku zwarcia prąd zwarciowy będzie na tyle wysoki, aby zadziałały zabezpieczenia, minimalizując ryzyko uszkodzeń oraz pożaru. Właściwy dobór przekroju żył jest szczególnie ważny w instalacjach o dużym obciążeniu, gdzie niewłaściwe wartości impedancji mogą prowadzić do awarii systemu.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jaką wartość skuteczną ma przemienne napięcie dotykowe, które może być stosowane przez dłuższy czas w normalnych warunkach środowiskowych, dla oporu ciała ludzkiego wynoszącego około 1 kΩ?

A. 12 V
B. 60 V
C. 50 V
D. 25 V
Wartość skuteczna przemiennego napięcia dotykowego, która jest dopuszczalna długotrwale w warunkach normalnych dla rezystancji ciała ludzkiego wynoszącej około 1 kΩ, wynosi 50 V. To napotykane w praktyce napięcie odnosi się do wyjątkowo istotnych norm bezpieczeństwa elektrycznego, takich jak normy IEC 60479, które klasyfikują skutki działania prądu elektrycznego na ciało ludzkie. Napięcie dotykowe 50 V jest graniczną wartością, poniżej której ryzyko porażenia prądem jest znacznie mniejsze, a powyżej której mogą wystąpić niebezpieczne skutki. W praktyce oznacza to, że instalacje elektryczne, które są do 50 V, są uważane za bezpieczne przy normalnych warunkach użytkowania. Przykłady zastosowania tej wiedzy obejmują projektowanie systemów zasilania w budynkach mieszkalnych oraz w urządzeniach użytkowych, gdzie zastosowane napięcia nie powinny przekraczać tej wartości, aby zminimalizować ryzyko dla użytkowników, zwłaszcza w miejscach narażonych na wilgoć, takich jak łazienki czy kuchnie. Zrozumienie i przestrzeganie tych ograniczeń jest kluczowe dla bezpieczeństwa użytkowników oraz zgodności z obowiązującymi przepisami i normami branżowymi.

Pytanie 9

Jaką minimalną liczbę pracowników z wymaganymi kwalifikacjami powinien zagwarantować pracodawca do realizacji prób i pomiarów przy urządzeniach elektrycznych o napięciu poniżej 1 kV w biurze?

A. Czterech
B. Jednego
C. Trzech
D. Dwóch
Odpowiedź 'jednego' pracownika jest poprawna, ponieważ zgodnie z obowiązującymi normami, w tym z Polską Normą PN-IEC 60364, przy wykonywaniu prac przy urządzeniach elektrycznych o napięciu poniżej 1 kV, wystarcza obecność jednego pracownika posiadającego odpowiednie kwalifikacje i uprawnienia. Takie prace, szczególnie w środowisku biurowym, często nie wymagają dodatkowych osób do nadzoru, chyba że sytuacja wskazuje na szczególne ryzyko. Zazwyczaj pracownik ten powinien mieć uprawnienia w zakresie eksploatacji urządzeń elektrycznych, co potwierdza jego zdolność do bezpiecznego wykonywania pomiarów i prób. Na przykład, podczas przeprowadzania testów izolacji kabla, wystarczy jedna osoba, aby przeprowadzić pomiary. W praktyce, odpowiednia dokumentacja i zapisy, takie jak protokoły pomiarów, również są niezbędne do zapewnienia zgodności z normami bezpieczeństwa. Warto również zauważyć, że taka minimalna liczba pracowników jest zgodna z zaleceniami i dobrymi praktykami, co pozwala na efektywne zarządzanie zasobami ludzkimi w firmach zajmujących się obsługą urządzeń elektrycznych.

Pytanie 10

Który z wymienionych parametrów przewodów nie wpływa na wartość spadku napięcia w instalacji elektrycznej?

A. Typ materiału żyły
B. Długość przewodu
C. Przekrój żył
D. Typ materiału izolacji
Rodzaj materiału izolacji nie wpływa na wartość spadku napięcia w instalacji elektrycznej, ponieważ spadek napięcia jest determinowany przez właściwości przewodnika, a nie jego otoczenie. Kluczowymi czynnikami wpływającymi na spadek napięcia są długość przewodu, jego przekrój oraz materiał, z którego wykonana jest żyła. Spadek napięcia można obliczyć przy pomocy wzorów, które uwzględniają opór przewodnika, a ten z kolei zależy od jego długości, przekroju oraz rodzaju materiału (miedź lub aluminium). W praktyce, dla zminimalizowania spadków napięcia w instalacjach elektrycznych, stosuje się przewody o większym przekroju oraz starannie planuje długości odcinków przewodów. Na przykład, w instalacjach o dużym obciążeniu, takich jak sieci zasilające przemysłowe, zastosowanie przewodów miedzianych o dużym przekroju pozwala na skuteczne ograniczenie strat napięcia, co jest zgodne z wymogami norm PN-IEC 60364-5-52.

Pytanie 11

Podczas badania skuteczności działania dwóch wyłączników różnicowoprądowych, których znamionowy prąd różnicowy wynosi 30 mA, uzyskano wyniki przedstawione w tabeli:
Przy założeniu, że prąd wyzwalający nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego oraz nie powinien przekraczać wartości znamionowego prądu różnicowego, o działaniu tych wyłączników można powiedzieć, że

Numer wyłącznika różnicowoprądowegoRzeczywisty, zmierzony prąd różnicowy
120 mA
210 mA
A. pierwszy i drugi działają prawidłowo.
B. pierwszy i drugi działają nieprawidłowo.
C. pierwszy działa prawidłowo, a drugi działa nieprawidłowo.
D. pierwszy działa nieprawidłowo, a drugi działa prawidłowo.
Wyłącznik różnicowoprądowy nr 1 działa jak należy, bo jego prąd wyzwalający to 20 mA. Mieści się to w akceptowalnym zakresie, bo prąd nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego. Dla wyłącznika 30 mA to oznacza, że musi być minimalnie 15 mA. Działanie takiego wyłącznika ocenia się pod kątem ochrony przed porażeniem prądem, co jest naprawdę ważne. W praktyce, wyłączniki różnicowoprądowe są kluczowe w instalacjach elektrycznych, bo zapewniają bezpieczeństwo wszystkich użytkowników. Regularne kontrolowanie i testowanie tych urządzeń to podstawa, żeby mieć pewność, że działają zgodnie z normami, na przykład PN-EN 61008-1, która określa wymagania dla tych wyłączników. Warto też prowadzić dokumentację pomiarów i regularnie je kalibrować, bo to zapewnia, że systemy ochrony przed porażeniem są niezawodne.

Pytanie 12

Obroty silnika indukcyjnego klatkowego obciążonego nominalnym momentem znacząco spadły. Jakie mogą być tego przyczyny?

A. Zadziałanie przekaźnika termicznego
B. Przepalony bezpiecznik topikowy w jednej z faz
C. Zwarcie w obwodzie wirnika
D. Zbyt wysoka temperatura uzwojeń
Zadziałanie przekaźnika termicznego zazwyczaj wskazuje na nadmierne nagrzewanie się silnika, co w konsekwencji prowadzi do wyłączenia go w celu ochrony przed uszkodzeniem. Chociaż taki stan rzeczy może również skutkować zmniejszeniem obrotów, to nie jest on pierwotną przyczyną opisanego scenariusza, gdyż w przypadku zadziałania przekaźnika termicznego silnik zwykle zatrzymuje się całkowicie, a nie zmienia jedynie obroty. Z kolei zwarcie w obwodzie wirnika powoduje poważne uszkodzenia, a nie tylko spadek obrotów. Tego rodzaju usterka prowadzi do natychmiastowego wyłączenia silnika z powodu nadmiernego prądu, a nie delikatnego spadku wydajności. Ponadto, zbyt wysoka temperatura uzwojeń jest zwykle wynikiem niewłaściwego chłodzenia lub nadmiernego obciążenia, a nie bezpośrednią przyczyną nagłego spadku obrotów, co jest istotnym zagadnieniem w kontekście eksploatacji silników. Typowe błędy myślowe w tym przypadku polegają na myleniu symptomów z przyczynami; zrozumienie mechanizmu działania silnika indukcyjnego oraz jego zabezpieczeń jest kluczowe dla prawidłowej diagnostyki i utrzymania urządzeń w ruchu. Dlatego istotne jest stosowanie się do standardów eksploatacyjnych oraz okresowe przeglądy instalacji.

Pytanie 13

Która z poniższych przyczyn powoduje, że przekaźnik Buchholza działa na wyłączenie transformatora?

A. Brak uziemienia punktu neutralnego
B. Zwarcie między uzwojeniem pierwotnym a wtórnym
C. Brak w uzwojeniu pierwotnym
D. Niesymetryczne obciążenie transformatora
Zwarcie między uzwojeniem pierwotnym i wtórnym to jedna z najpoważniejszych awarii, które mogą wystąpić w transformatorze. Przekaźnik Buchholza jest specjalnie zaprojektowany do detekcji i reagowania na tego typu problemy. W momencie, gdy dochodzi do zwarcia, prąd płynący przez uzwojenia gwałtownie wzrasta, co powoduje nagłe zmiany w przepływie oleju w transformatorze. Czujniki w przekaźniku Buchholza wykrywają te zmiany, co skutkuje jego aktywacją i wyłączeniem transformatora. Takie działanie ma na celu ochronę urządzenia przed dalszymi uszkodzeniami oraz minimalizację ryzyka wystąpienia poważnych awarii. W praktyce, stosowanie przekaźnika Buchholza jest normą w przemyśle energetycznym, działając zgodnie z wytycznymi Międzynarodowej Komisji Elektrotechnicznej (IEC) oraz krajowymi standardami ochrony urządzeń elektroenergetycznych. Regularne inspekcje i testy przekaźników Buchholza są kluczowe dla zapewnienia ich niezawodności i skuteczności w diagnostyce awarii, co jest istotne dla ciągłości dostaw energii.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

W tabeli przedstawiono parametry znamionowe silnika. Do jakiego rodzaju pracy jest on przeznaczony?

Typ silnikaSEh 80-4CF
Moc1,1 kW
Prędkość obrotowa1400 obr/min
ObudowaAluminium
Napięcie zasilania230 V, 50 Hz
Stopień ochronyIP 54
Rodzaj pracyS2
Sprawność74%
Pojemność kondensatora pracy30 μF
Pojemność kondensatora rozruchowego75 μF
A. Przerywanej z hamowaniem elektrycznym.
B. Przerywanej z rozruchem.
C. Dorywczej.
D. Ciągłej.
Silnik oznaczony jako przeznaczony do pracy dorywczej (S2) jest zaprojektowany do pracy przez określony czas, po którym konieczne jest schłodzenie. Przykładem zastosowania takiego silnika mogą być urządzenia, które pracują w cyklach, np. pompy, wentylatory czy maszyny przemysłowe, które nie wymagają ciągłej eksploatacji. W praktyce oznacza to, że silnik może pracować w trybie dorywczym przez kilka minut do kilku godzin, w zależności od jego parametrów znamionowych, a następnie musi zostać wyłączony, aby uniknąć przegrzania. Standardy normatywne, takie jak IEC 60034-1, definiują takie klasy pracy silników elektrycznych, co zapewnia, że inżynierowie projektujący systemy napędowe mogą odpowiednio dobierać silniki do wymagań aplikacji. Wiedza o tych oznaczeniach jest kluczowa dla zapewnienia efektywności energetycznej oraz długowieczności urządzeń, co ma bezpośredni wpływ na koszty eksploatacji.

Pytanie 18

Określ prawidłową sekwencję działań przy wymianie uszkodzonego łącznika świecznikowego w instalacji elektrycznej.
włączenie napięcia, sprawdzenie prawidłowości działania.

A. Wyłączenie napięcia, stwierdzenie braku napięcia, demontaż łącznika, montaż łącznika, włączenie napięcia, sprawdzenie prawidłowości działania
B. Sprawdzenie prawidłowości działania, włączenie napięcia, stwierdzenie braku napięcia, demontaż łącznika, montaż łącznika, wyłączenie napięcia
C. Stwierdzenie braku napięcia, wyłączenie napięcia, demontaż łącznika, montaż łącznika, sprawdzenie
D. Wyłączenie napięcia, demontaż łącznika, montaż łącznika, sprawdzenie prawidłowości działania, stwierdzenie braku napięcia, włączenie napięcia
Kiedy zabierasz się za wymianę uszkodzonego łącznika świecznikowego, najważniejsze to zacząć od wyłączenia napięcia. Bez tego krok nie tylko porażka może się wydarzyć, ale coś gorszego. Potem, zanim zaczniesz grzebać w instalacji, dobrze jest upewnić się, że naprawdę nie ma napięcia w obwodzie. To trochę jak dobre nawyki, które mogą uratować życie. Jak już to masz za sobą, możesz zająć się demontażem starego łącznika, ale pamiętaj, żeby być ostrożnym – nigdy nie wiadomo, co może się zdarzyć. Po włożeniu nowego łącznika, dopiero wtedy możesz włączyć napięcie i sprawdzić, czy wszystko działa. Taka kolejność jest super ważna i zgadza się z normami bezpieczeństwa, jak PN-IEC 60364, które mówią, jak robić to bezpiecznie. W sumie, w domowym warsztacie to przydatna wiedza, bo często coś się psuje i warto wiedzieć, jak to zrobić porządnie i bezpiecznie.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Którego z poniższych pomiarów eksploatacyjnych instalacji oświetleniowej nie jest możliwe przeprowadzić przy użyciu typowego miernika uniwersalnego?

A. Prądu, który jest pobierany przez odbiornik
B. Ciągłości przewodów ochronnych
C. Napięcia w poszczególnych fazach
D. Rezystancji izolacji przewodów
Rezystancja izolacji przewodów jest kluczowym pomiarem w ocenie bezpieczeństwa instalacji elektrycznych i oświetleniowych. Typowe mierniki uniwersalne, takie jak multimetrowe, są przeznaczone głównie do pomiarów prądu, napięcia i oporu, jednak nie są wystarczające do pomiaru rezystancji izolacji. Pomiar ten wymaga zastosowania specjalistycznych urządzeń, takich jak megomierze, które generują znacznie wyższe napięcia (zazwyczaj w zakresie 250V, 500V lub 1000V) w celu oceny jakości izolacji. W praktyce, taki pomiar pozwala na wykrycie uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych sytuacji, takich jak przebicia elektryczne. Normy takie jak PN-IEC 60364 podkreślają konieczność regularnego przeprowadzania pomiarów rezystancji izolacji, co jest niezbędne dla zapewnienia bezpieczeństwa użytkowników oraz trwałości instalacji. Przykładowo, w przypadku instalacji w obiektach publicznych, pomiar ten jest obligatoryjny, aby zapewnić spełnienie określonych standardów bezpieczeństwa elektrycznego.

Pytanie 21

Jaka powinna być nominalna wartość prądu bezpiecznika aparatu zamontowanego w obwodzie pierwotnym transformatora jednofazowego o parametrach: U1N= 230 V, U2N= 13 V, używanego w ładowarce do akumulatorów, jeśli przewidywana wartość prądu ładowania akumulatorów wynosi 15 A?

A. 16A
B. 1A
C. 6A
D. 10A
Przy wyborze wartości prądu znamionowego bezpiecznika aparatowego kluczowe jest zrozumienie, dlaczego niektóre odpowiedzi są błędne. Wartości prądu 6A, 10A i 1A są niewłaściwe, ponieważ nie uwzględniają rzeczywistego prądu obciążenia ładowania akumulatorów, który wynosi 15 A. Wybór bezpiecznika o wartości 6A lub 10A byłby nieodpowiedni, ponieważ taki bezpiecznik zadziałałby w przypadku normalnej pracy urządzenia, co doprowadziłoby do niepotrzebnych przerw w działaniu systemu. Przykład 1A jest skrajnie nieodpowiedni – w praktyce nie może on zapewnić ochrony w obwodzie, w którym prąd roboczy wynosi 15 A, co prowadziłoby do niebezpiecznych sytuacji. Niewłaściwy dobór wartości prądu bezpiecznika może skutkować nie tylko uszkodzeniem urządzeń, ale również stanowić zagrożenie dla bezpieczeństwa użytkowników. Dlatego warto pamiętać, że standardowe praktyki inżynieryjne wymagają doboru bezpieczników w taki sposób, aby ich prąd znamionowy był co najmniej 20-25% wyższy od maksymalnego przewidywanego prądu roboczego, co w tym przypadku potwierdza konieczność zastosowania bezpiecznika 16A.

Pytanie 22

Poniżej przedstawiono wybrane parametry silnika trójfazowego. Jakie zakresy cewek prądowych oraz napięciowych watomierzy powinny być dobrane, aby w układzie Arona zmierzyć moc pobieraną przez silnik zasilany napięciem 3×400 V, 50 Hz i pracujący z obciążeniem znamionowym przy połączeniu w gwiazdę?

Silnik 3~ Typ IE2-90S-4 S1
1,1 kW 3,2/1,8 A Izol. F
IP 55 1420 obr/min cosφ 0,75
230/400 V 50 Hz

A. In = 2 A, Un = 200 V
B. In = 1 A, Un = 400 V
C. In = 1 A, Un = 200 V
D. In = 2 A, Un = 400 V
Odpowiedź In = 2 A, Un = 400 V jest poprawna, ponieważ silnik zasilany jest napięciem 3×400 V i ma znamionowy prąd 3,2 A. Przy połączeniu w gwiazdę prąd w każdej fazie silnika wynosi Iz = 3,2 A, co oznacza, że wybierając zakres prądowy, wartość 2 A jest najbardziej odpowiednia, gdyż w praktyce przy pomiarach można zastosować urządzenia o wyższych zakresach. W przypadku napięcia, wybór 400 V jest również adekwatny, ponieważ to napięcie odpowiada zasilaniu silnika. Warto zwrócić uwagę, że stosowanie watomierzy z zakresami dostosowanymi do rzeczywistych parametrów pracy urządzeń jest kluczowe dla uzyskania dokładnych wyników pomiarów. Przykładem zastosowania takiej konfiguracji może być monitorowanie efektywności energetycznej silników w przemyśle, co pozwala na optymalizację zużycia energii oraz minimalizację strat. Dobrą praktyką w takich zastosowaniach jest również regularne kalibrowanie sprzętu pomiarowego oraz stosowanie urządzeń zgodnych z normami IEC 61010, co zapewnia bezpieczeństwo oraz dokładność pomiarów.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Która z poniższych czynności nie jest częścią badań eksploatacyjnych silnika elektrycznego?

A. Przeprowadzenie próbnego rozruchu urządzenia
B. Pomiar napięcia zasilającego
C. Pomiar rezystancji uzwojeń stojana
D. Weryfikacja stanu ochrony przeciwporażeniowej
Pomiar napięcia zasilania nie należy do badań eksploatacyjnych silnika elektrycznego, ponieważ jest to czynność raczej związana z kontrolą źródła zasilania, a nie diagnostyką samego silnika. W kontekście eksploatacji silników elektrycznych, kluczowe jest zrozumienie, że badania eksploatacyjne koncentrują się na ocenie stanu technicznego komponentów silnika, takich jak uzwojenia, izolacja czy mechanika. Pomiar rezystancji uzwojeń stojana oraz sprawdzenie stanu ochrony przeciwporażeniowej są kluczowe dla bezpieczeństwa i efektywności pracy silnika. Rozruch próbny urządzenia jest niezbędny do oceny jego działania w rzeczywistych warunkach. Przykładowo, w przemyśle, regularne badania eksploatacyjne pozwalają na wczesne wykrycie potencjalnych awarii, co zmniejsza ryzyko przestojów i zwiększa efektywność operacyjną.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jaką wielkość należy zmierzyć, aby ocenić skuteczność zabezpieczeń podstawowych w elektrycznej instalacji o napięciu znamionowym do 1 kV?

A. Impedancji zwarciowej
B. Rezystancji izolacji
C. Napięcia krokowego
D. Rezystancji uziomu
Pomiar rezystancji izolacji jest kluczowym elementem oceny skuteczności ochrony podstawowej w instalacjach elektrycznych, szczególnie w tych o napięciu znamionowym do 1 kV. Odpowiedni poziom rezystancji izolacji zapewnia, że nie występują niepożądane przepływy prądu do ziemi, co mogłoby prowadzić do porażenia prądem lub uszkodzenia urządzeń. Zgodnie z normą PN-EN 60364-6, minimalna rezystancja izolacji powinna wynosić co najmniej 1 MΩ dla systemów o napięciu do 1 kV, co gwarantuje odpowiednie bezpieczeństwo. Przykładem zastosowania tego pomiaru jest przeprowadzanie testów przed oddaniem do użytkowania nowej instalacji, a także regularne kontrole w celu wykrycia degradacji izolacji na skutek starzenia się materiałów, wilgoci czy innych czynników zewnętrznych. Dzięki tym pomiarom można zminimalizować ryzyko awarii, co jest szczególnie istotne w obiektach użyteczności publicznej oraz w środowiskach przemysłowych, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jakie urządzenie powinno być użyte do zasilania obwodu SELV z sieci 230 V, 50 Hz?

A. Falownikiem
B. Autotransformatorem
C. Dzielnikiem napięcia
D. Transformatorem bezpieczeństwa
Transformatory bezpieczeństwa to naprawdę ważne urządzenia, które używamy do zasilania obwodów SELV, czyli tych, które są bezpieczne w użytkowaniu. Dzięki nim możemy korzystać z energii elektrycznej w miejscach, gdzie jest ryzyko kontaktu z wodą czy innymi przewodzącymi substancjami. Ich główną rolą jest izolować niskonapięciowy obwód od sieci energetycznej, co zdecydowanie zmniejsza ryzyko porażenia prądem. Dobrze to widać w praktyce — na przykład, w oświetleniu ogrodowym, łazienkach czy w systemach alarmowych. Zgodnie z normą PN-EN 61558, transformatory te muszą spełniać różne wymogi dotyczące izolacji i zabezpieczeń przed przeciążeniem. W sumie, stosowanie transformatorów bezpieczeństwa tam, gdzie liczy się bezpieczeństwo, to dobra praktyka, którą warto stosować.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Piec elektryczny o mocy 12 kW jest zasilany z trójfazowej instalacji 3 x 400 V za pomocą przewodu o długości 20 m i przekroju 4 mm2. Jakie konsekwencje przyniesie wymiana tego przewodu na przewód o tej samej długości, lecz o przekroju 6 mm2?

A. Spadek napięcia na przewodach zasilających zmniejszy się.
B. Spadek napięcia na przewodach zasilających wzrośnie.
C. Moc wydobywana w piecu wzrośnie 1,5 raza.
D. Moc wydobywana w piecu zmaleje 1,5 raza.
Pojęcie spadku napięcia jest kluczowe w kontekście efektywności instalacji elektrycznych i w niniejszym przypadku odpowiedzi, które sugerują zwiększenie spadku napięcia, są niepoprawne, ponieważ nie uwzględniają zasady związanej z oporem przewodów. W rzeczywistości, gdy przekrój przewodu wzrasta, opór maleje, co prowadzi do zmniejszenia spadku napięcia na przewodach. Odpowiedzi, które mówią o zmniejszeniu mocy wydzielanej w piecu, mogą wynikać z błędnego zrozumienia relacji między napięciem, prądem a mocą. Moc wydobywana przez urządzenia elektryczne zależy od napięcia i prądu, a zatem jeśli spadek napięcia maleje, urządzenie ma szansę na stabilniejsze zasilanie, a nie jego zmniejszenie. Podobnie, twierdzenie o zwiększeniu mocy wydzielanej w piecu jest mylące, ponieważ moc pieca elektrycznego jest ustalana przez parametry zasilania i nie wzrośnie w wyniku wymiany przewodu, lecz pozostaje na poziomie 12 kW, zgodnie z jego specyfikacją. Użytkownicy często nie rozumieją, że zmiana przekroju przewodu nie zmienia wymagań dotyczących mocy urządzenia, lecz wpływa korzystnie na parametry przesyłowe energii, co powinno być kluczowym elementem w analizie tego przypadku.

Pytanie 33

Jakie kroki należy podjąć, gdy całkowita wartość spadków napięć w systemie TN-S pomiędzy złączem ZKP a najodleglejszym gniazdem odbiorczym wynosi 9 V, w sieci elektrycznej o napięciu 230 V?

A. Zwiększyć średnicę przewodów w instalacji wewnętrznej
B. Zwiększyć średnicę przewodów kabla WLZ
C. Zmniejszyć średnicę przewodów kabla WLZ
D. Pozostawić instalację zasilającą bez zmian
Dobrze, że to przemyślałeś. Myśl, że zwiększenie przekroju przewodów to zawsze dobry pomysł, nie do końca jest słuszne. W tym przypadku, spadek napięcia na poziomie 9 V w instalacji 230 V jest w dopuszczalnym zakresie, więc nie trzeba nic zmieniać. Zwiększenie kabli może przecież wprowadzić dodatkowe koszty, a także sprawić, że cała instalacja będzie cięższa i większa. A jeśli chodzi o zmniejszanie przekroju żył kabla WLZ, to totalnie nie ma sensu, bo to może prowadzić do jeszcze większych strat napięcia i przegrzewania. Więc generalnie, jeśli wszystko jest w normie, nic nie rób, nie ma co komplikować życia bez potrzeby. Pamiętaj, że dokładne obliczenia i znajomość norm, takich jak PN-IEC 60364, to klucz do robienia dobrych decyzji przy projektowaniu instalacji elektrycznych.

Pytanie 34

Urządzenia elektryczne o klasie ochrony 0 mogą być stosowane wyłącznie w sytuacji

A. wcześniejszego zweryfikowania efektywności ochrony w instalacji
B. korzystania z nich pod nadzorem technicznym ze strony dostawcy energii elektrycznej
C. wdrożenia ochrony przed porażeniem w formie separacji elektrycznej lub izolacji miejsca wykonywania pracy
D. zasilania ich z gniazd z ochronnym bolcem uziemiającym
Urządzenia elektryczne klasy ochronności 0 są projektowane w sposób, który nie zapewnia żadnej formy ochrony przed porażeniem elektrycznym. W związku z tym ich stosowanie wymaga zastosowania dodatkowych środków ochrony, takich jak separacja elektryczna lub izolacja stanowiska pracy. Zgodnie z normą PN-IEC 61140, urządzenia tej klasy powinny być wykorzystywane w środowiskach, gdzie ryzyko porażenia jest minimalizowane poprzez odpowiednie techniki zabezpieczające. Przykładem może być stosowanie tych urządzeń w pomieszczeniach suchych, gdzie nie ma ryzyka kontaktu z wodą, oraz w sytuacjach, gdzie pracownicy są odpowiednio przeszkoleni w zakresie bezpieczeństwa. W praktyce, można zastosować również urządzenia ochronne, które odcinają zasilanie w przypadku wykrycia upływu prądu, co dodatkowo zwiększa bezpieczeństwo. Dlatego kluczowe jest, aby przed użyciem takich urządzeń, upewnić się, że są spełnione wszystkie warunki ochrony przeciwporażeniowej oraz że urządzenia są wykorzystywane zgodnie z ich przeznaczeniem.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Aby zapobiec przegrzewaniu uzwojeń silnika indukcyjnego, nie powinno się długotrwale

A. przekraczać prądu znamionowego
B. obniżać poślizgu
C. zwiększać oporu wirnika
D. zmniejszać współczynnika mocy
Przekraczanie prądu znamionowego silnika indukcyjnego prowadzi do jego przegrzewania, co może skutkować uszkodzeniem izolacji uzwojeń oraz skróceniem żywotności urządzenia. Prąd znamionowy to maksymalny prąd, który silnik może pobierać w normalnych warunkach pracy, zgodnie z jego specyfikacją. Przekroczenie tej wartości, na przykład podczas przeciążenia lub przy zbyt małym napięciu zasilającym, powoduje wzrost temperatury uzwojeń, co z kolei prowadzi do zwiększenia strat cieplnych i ryzyka awarii. W praktyce, zastosowanie odpowiednich zabezpieczeń, takich jak wyłączniki silnikowe lub przekaźniki termiczne, jest kluczowe dla ochrony silników przed skutkami przeciążeń. Dodatkowo, regularne monitorowanie stanu technicznego silnika oraz jego parametrów pracy, zgodnie z normą PN-EN 60034, pozwala na wczesne wykrywanie problemów i podejmowanie działań zapobiegawczych. Z tego względu, przy projektowaniu systemów zasilania należy uwzględnić odpowiednie marginesy dla prądu znamionowego, aby zapewnić długotrwałą i bezawaryjną pracę silników indukcyjnych.

Pytanie 38

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania i wyniki zamieszczono w przedstawionej tabeli. Który z wyłączników spełnia warunek prądu zadziałania IA = (0,5÷1,00) IΔN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania IΔ
P302 25-10-AC25 mA
P202 25-30-AC25 mA
P304 40-30-AC40 mA
P304 40-100-AC40 mA
A. P302 25-10-AC
B. P202 25-30-AC
C. P304 40-100-AC
D. P304 40-30-AC
Wybór wyłącznika różnicowoprądowego, który nie spełnia założonego zakresu prądu zadziałania, może prowadzić do poważnych problemów w systemie elektrycznym. Na przykład, wyłącznik P304 40-30-AC, który ma prąd zadziałania poza wymaganym zakresem, może nie wykrywać niebezpiecznych sytuacji, co zwiększa ryzyko porażenia prądem lub pożaru. Podobnie, wyłącznik P302 25-10-AC, ze zbyt niskim prądem zadziałania, może zadziałać w sytuacjach, które nie zagrażają bezpieczeństwu, co prowadzi do niepotrzebnych przerw w zasilaniu. Te błędy mogą wynikać z braku zrozumienia związku między nominalnym prądem różnicowym a prądem zadziałania. Kluczowym jest, aby zrozumieć, że prąd zadziałania musi być odpowiednio dobrany do wartości nominalnej wyłącznika, aby zapewnić jego skuteczność i niezawodność. Niezrozumienie tych zasad prowadzi do wyboru nieodpowiednich urządzeń, co w praktyce może skutkować poważnymi konsekwencjami. W wyborze wyłączników różnicowoprądowych należy kierować się normami oraz specyfikacjami technicznymi, aby zapewnić odpowiedni poziom ochrony w każdej instalacji elektrycznej.

Pytanie 39

Jakie jest najwyższe dozwolone różnicowe natężenie prądu znamionowego wyłącznika różnicowoprądowego w celu zapewnienia ochrony przeciwpożarowej?

A. 300 mA
B. 10 mA
C. 100 mA
D. 30 mA
Odpowiedź 300 mA jest prawidłowa, ponieważ zgodnie z normami ochrony przeciwpożarowej, maksymalny dopuszczalny różnicowy prąd znamionowy wyłącznika różnicowoprądowego, który ma na celu ochronę przed pożarem, wynosi właśnie 300 mA. Wyłączniki różnicowoprądowe o tej wartości prądu są projektowane tak, aby minimalizować ryzyko zapłonu w przypadku wystąpienia zwarcia, umożliwiając jednocześnie zapewnienie dostatecznego poziomu ochrony osób przed porażeniem prądem elektrycznym. W praktyce zastosowanie wyłączników o wartości 300 mA jest szczególnie zalecane w obiektach użyteczności publicznej oraz w instalacjach, gdzie występuje duże ryzyko przepływu prądu, ale niekoniecznie można zainstalować wyłączniki o niższych wartościach. Pomagają one w ograniczeniu skutków awarii i minimalizują straty materialne, podnosząc bezpieczeństwo całego systemu elektrycznego. Warto dodać, że w obiektach mieszkalnych oraz w strefach o podwyższonym ryzyku, takich jak łazienki czy kuchnie, zaleca się stosowanie wyłączników różnicowoprądowych o prądzie znamionowym 30 mA, co zapewnia skuteczniejszą ochronę przed porażeniem elektrycznym.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.