Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 2 września 2025 21:11
  • Data zakończenia: 2 września 2025 21:26

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie elementy wykorzystuje się w silnikach elektrycznych, aby chronić je przed negatywnymi skutkami wzrostu temperatury uzwojeń?

A. Wyłącznik silnikowy
B. Przekaźnik nadprądowy
C. Termistor
D. Bezpiecznik
Termistor to element półprzewodnikowy, który zmienia swoją rezystancję w zależności od temperatury. W silnikach elektrycznych termistory są powszechnie stosowane do monitorowania temperatury uzwojeń. Gdy temperatura wzrasta, rezystancja termistora zmienia się, co pozwala na wczesne wykrywanie przegrzewania. W praktyce, jeśli temperatura osiągnie ustalony próg, termistor może aktywować sygnał alarmowy lub bezpośrednio wyłączyć silnik, zapobiegając uszkodzeniom. Zastosowanie termistorów w silnikach elektrycznych jest zgodne z normami IEC 60034-1, które zalecają stosowanie odpowiednich zabezpieczeń termicznych w urządzeniach elektrycznych. Dobrą praktyką jest umieszczanie termistorów w pobliżu uzwojeń lub w ich konstrukcji, co pozwala na szybką reakcję na zmiany temperatury i ochronę przed przegrzewaniem, co może prowadzić do awarii. Termistory są stosowane nie tylko w silnikach, ale również w wielu aplikacjach, takich jak urządzenia AGD czy systemy HVAC, gdzie kontrola temperatury jest kluczowa dla prawidłowego funkcjonowania.

Pytanie 2

Której z poniższych czynności nie da się zrealizować podczas próbnego uruchamiania zgrzewarki oporowej?

A. Pomiaru czasu poszczególnych etapów zgrzewania: docisku i przerwy
B. Sprawdzenia stanu oraz prawidłowości ustawienia elektrod
C. Sprawdzenia działania przełącznika do zgrzewania pojedynczego oraz ciągłego
D. Pomiaru rezystancji izolacji pomiędzy uzwojeniem pierwotnym transformatora a obudową
Pomiar rezystancji izolacji między uzwojeniem pierwotnym transformatora a obudową jest kluczowym krokiem w zapewnieniu bezpieczeństwa i niezawodności zgrzewarki oporowej. Wykonanie tego pomiaru przed rozpoczęciem użytkowania urządzenia pozwala na wykrycie ewentualnych uszkodzeń izolacji, co może prowadzić do zwarć elektrycznych czy porażenia prądem użytkowników. W praktyce, standardowe normy dotyczące bezpieczeństwa elektrycznego, takie jak IEC 60204-1, nakładają na producentów i operatorów obowiązek regularnego sprawdzania stanu izolacji urządzeń. Pomiar rezystancji izolacji można przeprowadzić za pomocą specjalistycznych mierników, które umożliwiają określenie wartości rezystancji w stosunku do wymaganych norm. Przykładowo, minimalna wartość rezystancji izolacji powinna wynosić co najmniej 1 MΩ w urządzeniach przemysłowych, co zapewnia odpowiedni poziom bezpieczeństwa. Regularne kontrole i pomiary takich parametrów, jak rezystancja izolacji, są częścią dobrych praktyk konserwacyjnych, które zapewniają długotrwałą sprawność i bezpieczeństwo urządzenia.

Pytanie 3

W systemach z stycznikami kategorii użytkowania DC-6 mogą być wykorzystywane

A. świetlówki
B. lampy rtęciowe
C. żarówki
D. lampy sodowe
Wybór świetlówek, lamp sodowych i lamp rtęciowych jako potencjalnych odpowiedzi na to pytanie jest mylący, ponieważ te typy źródeł światła mają różne właściwości, które wpływają na ich zastosowanie w układach prądu stałego, takich jak DC-6. Świetlówki, chociaż szeroko stosowane w oświetleniu, wymagają specjalnych układów elektronicznych do uruchamiania, co czyni je nieodpowiednimi dla prostych styczników stosowanych w układach DC-6. Dodatkowo, ich działanie opiera się na zjawisku wyładowania elektrycznego w gazie, co w połączeniu z prądem stałym może prowadzić do niestabilności i niewłaściwego działania. Lampy sodowe i rtęciowe z kolei są projektowane głównie z myślą o pracy w obwodach prądu przemiennego, a ich zastosowanie w systemach prądu stałego może prowadzić do przegrzewania się i uszkodzenia, ze względu na różnice w charakterystyce obciążeniowej. Te błędne podejścia wynikają z braku zrozumienia, jak różne źródła światła reagują na różne typy prądów oraz jakie są wymagania techniczne dla ich prawidłowego działania. Kluczowe jest, aby przy doborze elementów w instalacjach elektrycznych, opierać się na ich specyfikacjach technicznych oraz normach branżowych, aby zapewnić bezpieczeństwo i efektywność działania całego systemu oświetleniowego.

Pytanie 4

W instalacji trójfazowej natężenie prądu obciążenia przewodów fazowych IB wynosi 21 A, natomiast maksymalna obciążalność długotrwała tych przewodów Idd to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji przed skutkami zbyt dużego prądu?

A. B20
B. B16
C. B25
D. B32
Wyłącznik nadprądowy B25 jest odpowiedni do zabezpieczenia instalacji trójfazowej, gdyż prąd obciążenia przewodów fazowych wynosi 21 A, a obciążalność długotrwała tych przewodów to 30 A. Wyłączniki nadprądowe klasy B charakteryzują się czasem zadziałania w zależności od wartości nadmiaru prądu, co czyni je idealnymi do ochrony obwodów o obciążeniu rezystancyjnym. W tym przypadku, wyłącznik B25 posiada nominalny prąd 25 A, co zapewnia dodatkowy margines bezpieczeństwa w stosunku do rzeczywistego prądu obciążenia 21 A. Zastosowanie wyłącznika o wyższej wartości nominalnej, jak B32, mogłoby prowadzić do sytuacji, w której obwód nie byłby odpowiednio chroniony, a wyłączniki o niższej wartości, jak B20 czy B16, mogą zadziałać w sposób niepożądany w przypadku niewielkich skoków prądu. Zgodnie z zasadami projektowania instalacji elektrycznych, wyłącznik należy dobierać w taki sposób, aby jego wartość nominalna była nieco wyższa niż wartość prądu roboczego, co zwiększa niezawodność systemu oraz zapewnia bezpieczeństwo użytkowania.

Pytanie 5

Który z poniższych przetworników powinien być użyty do pomiaru momentu obrotowego działającego na wał napędowy silnika elektrycznego?

A. Piezorezystor
B. Pozystor
C. Tensometr
D. Halotron
Pozystor, to element elektroniczny wykorzystywany głównie w obwodach elektronicznych jako czujnik temperatury. Choć może wydawać się atrakcyjny do pomiarów, to jednak nie jest odpowiedni do pomiaru momentu obrotowego, ponieważ nie może bezpośrednio mierzyć deformacji mechanicznych ani sił działających na wał. Jego działanie opiera się na zmianie oporu elektrycznego w reakcji na temperaturę, co nie ma związku z dynamiką momentu obrotowego. Halotron to kolejny typ czujnika, który jest wykorzystywany w pomiarach pola magnetycznego, a nie do analizy momentu obrotowego. Jego zasada działania opiera się na detekcji zmian w polu magnetycznym, co nie jest związane z pomiarem siły mechanicznej. Piezorezystor, mimo że może reagować na zmiany ciśnienia lub deformacji, również nie jest idealnym rozwiązaniem w kontekście pomiaru momentu obrotowego, ponieważ jego zastosowanie jest bardziej skoncentrowane na pomiarach w systemach ciśnienia. Przykłady zastosowania piezorezystorów obejmują czujniki ciśnienia, a nie pomiar momentu obrotowego. Typowe błędy w myśleniu, które prowadzą do wyboru nieodpowiednich czujników, obejmują mylenie charakterystyki pomiarowej z warunkami pracy oraz nieznajomość zastosowania konkretnego przetwornika w praktyce. Właściwy dobór przetwornika jest kluczowy dla uzyskania precyzyjnych i wiarygodnych rezultatów pomiarowych.

Pytanie 6

Kontrole okresowe instalacji elektrycznych niskiego napięcia powinny być realizowane co najmniej raz na

A. 4 lata
B. 3 lata
C. 1 rok
D. 5 lat
Zgodnie z obowiązującymi normami oraz przepisami prawa, badania okresowe instalacji elektrycznej niskiego napięcia powinny być przeprowadzane nie rzadziej niż co 5 lat. Takie podejście ma na celu zapewnienie bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania instalacji. W Polsce regulacje te są zawarte w normie PN-IEC 60364-6 oraz w Rozporządzeniu Ministra Infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie. Przeprowadzanie badań co 5 lat pozwala na wczesne wykrywanie potencjalnych usterek, które mogą prowadzić do poważnych awarii lub zagrożeń pożarowych. W praktyce, jeśli instalacja jest intensywnie eksploatowana, zaleca się częstsze kontrole, na przykład co 3 lata, ale minimum to właśnie 5 lat. Regularne audyty instalacji mogą obejmować testy wytrzymałości izolacji, pomiary rezystancji uziemienia czy sprawdzanie zabezpieczeń, co jest kluczowe dla ochrony ludzi i mienia.

Pytanie 7

Silnik prądu stałego w układzie szeregowym intensywnie iskrzy na segmentach komutatora. Najbardziej prawdopodobnym powodem uszkodzenia jest

A. przerwa w obwodzie stojana
B. zwarcie międzyzwojowe w obwodzie stojana
C. zwarcie międzyzwojowe w obwodzie wirnika
D. przerwa w obwodzie wirnika
Zwarcie międzyzwojowe w obwodzie wirnika jest najczęstszą przyczyną nadmiernego iskrzenia na komutatorze silnika szeregowego prądu stałego. Tego typu zwarcia powodują nieprawidłowy przepływ prądu w uzwojeniach wirnika, co skutkuje dużymi prądami roboczymi, a w konsekwencji prowadzi do powstania intensywnych łuków elektrycznych na komutatorze. Iskrzenie to nie tylko obniża efektywność pracy silnika, ale także może prowadzić do szybszego zużycia elementów komutatora oraz wirnika. Przykładowo, w silnikach stosowanych w aplikacjach przemysłowych, takich jak napędy trakcyjne czy maszyny robocze, kluczowe jest monitorowanie stanu uzwojeń, aby zminimalizować ryzyko zwarć. Regularne inspekcje oraz stosowanie systemów diagnostycznych, takich jak termowizja czy analiza drgań, mogą pomóc w wczesnym wykryciu problemów z uzwojeniami, co jest zgodne z najlepszymi praktykami w zarządzaniu utrzymaniem ruchu. Ponadto, zrozumienie efektów zwarć międzyzwojowych jest kluczowe dla inżynierów projektujących układy napędowe, aby mogli tworzyć bardziej niezawodne i trwałe systemy.

Pytanie 8

Jaką czynność można wykonać przy lokalizacji uszkodzeń w trakcie funkcjonowania instalacji oraz urządzeń elektrycznych w obszarach narażonych na wybuch?

A. Wymiana źródeł oświetlenia
B. Pomiar temperatury zewnętrznych powierzchni obudów silników
C. Dokręcanie luźnych śrub w osłonach urządzeń
D. Demontaż obudów urządzeń
Wymiana źródeł światła, otwieranie obudów urządzeń oraz dokręcanie poluzowanych śrub w osłonach urządzeń to czynności, które są niewłaściwe do wykonywania w strefach zagrożonych wybuchem. Wymiana źródeł światła często wiąże się z koniecznością demontażu osprzętu, co może zakłócić szczelność obudowy, a tym samym wprowadzić potencjalne źródło zapłonu. W strefach wybuchowych kluczowe jest utrzymanie integralności urządzeń oraz unikanie wszelkich działań, które mogą zwiększyć ryzyko. Otwieranie obudów urządzeń to kolejna czynność, która wiąże się z ryzykiem, ponieważ wprowadza do wnętrza obudowy powietrze z zewnątrz, co w przypadku obecności łatwopalnych substancji może prowadzić do niebezpiecznych sytuacji. Dokręcanie poluzowanych śrub również może stanowić problem, ponieważ zmiana stanu obudowy mogłaby wpłynąć na jej szczelność i zdolność do ochrony przed czynnikami zewnętrznymi. Często w takich strefach należy stosować odpowiednie procedury konserwacyjne, które są zgodne z wytycznymi producentów oraz standardami branżowymi, aby zminimalizować ryzyko wybuchu. Dlatego każda niesubordynacja wobec tych zasad może prowadzić do tragicznych konsekwencji, co podkreśla konieczność ścisłego przestrzegania wytycznych i stosowanie się do najlepszych praktyk w zakresie bezpieczeństwa elektrycznego.

Pytanie 9

Dla układu o parametrach U0 = 230 V, Ia = 100 A oraz Zs = 3,1 Ω działającego w systemie TN-C nie działa efektywnie dodatkowa ochrona przed porażeniem prądem, ponieważ

A. opór uziemienia jest zbyt niski
B. impedancja sieci zasilającej jest zbyt niska
C. impedancja pętli zwarcia jest zbyt duża
D. opór izolacji miejsca pracy jest zbyt duży
Odpowiedzi wskazujące na problemy z rezystancją izolacji stanowiska oraz rezystancją uziomu bazują na niepełnym zrozumieniu mechanizmów ochrony przed porażeniem prądem elektrycznym w kontekście układów TN-C. Rezystancja izolacji odnosi się do zdolności izolacji przewodów do zapobiegania przepływowi prądu do ziemi, co jest istotne, ale nie wpływa bezpośrednio na skuteczność działania zabezpieczeń w przypadku zwarcia. Niska rezystancja izolacji może być korzystna, ale nie rozwiązuje problemu, jeśli impedancja pętli zwarcia jest zbyt wysoka, co jest kluczowe dla prawidłowego działania zabezpieczeń. Z kolei rezystancja uziomu, która jest zbyt mała, również nie jest czynnikiem wpływającym na bezpieczeństwo w tym kontekście, gdyż może prowadzić do sytuacji, w której prąd zwarciowy nie osiągnie wymaganych wartości do zadziałania zabezpieczeń. Typowym błędem myślowym jest utożsamianie niskiej rezystancji uziomu z poprawnością działania ochrony, podczas gdy to właśnie impedancja pętli zwarcia ma zasadnicze znaczenie. Zrozumienie, że to impedancja pętli zwarcia wpływa na czas reakcji zabezpieczeń, a nie pojedyncze elementy systemu, jest kluczowe dla prawidłowego projektowania i eksploatacji instalacji elektrycznych.

Pytanie 10

Jakie skutki spowoduje podłączenie baterii kondensatorów równolegle do końcówek silnika asynchronicznego?

A. Częstotliwość prądu w silniku wzrośnie
B. Pobór mocy czynnej z sieci ulegnie zwiększeniu
C. Napięcie na końcówkach silnika się zmniejszy
D. Pobór mocy biernej z sieci będzie mniejszy
Włączenie baterii kondensatorów równolegle do zacisków silnika asynchronicznego prowadzi do zmniejszenia poboru mocy biernej z sieci. Kondensatory wprowadzają do obwodu moc czynną, co kompensuje ubytek mocy biernej generowanej przez silnik. Silniki asynchroniczne, zwłaszcza te o dużych mocach, często wykazują znaczny pobór mocy biernej, co powoduje obciążenie sieci elektroenergetycznej. Dlatego wprowadzenie baterii kondensatorów nie tylko poprawia współczynnik mocy, ale także zwiększa efektywność energetyczną całego systemu. W praktyce zastosowanie kondensatorów do kompensacji mocy biernej jest szeroko stosowane w przemyśle, gdzie obciążenia są zmienne, a ich odpowiednia konfiguracja pozwala na znaczące oszczędności kosztów związanych z energią elektryczną oraz redukcję strat w sieci. Ponadto, zgodnie z normami IEC 61000, stabilizacja współczynnika mocy jest kluczowym elementem w celu poprawy jakości energii w systemach elektroenergetycznych.

Pytanie 11

Jakie maksymalne napięcie elektryczne należy wykorzystać do zasilania lampy oświetleniowej zlokalizowanej w łazience w strefie 0?

A. 230 V AC
B. 12 V AC
C. 110 V DC
D. 50 V AC
Zasilanie lampy oświetleniowej w łazience, szczególnie w strefie 0, musi być zgodne z zasadami bezpieczeństwa, które mają na celu minimalizację ryzyka porażenia prądem elektrycznym. Maksymalna wartość napięcia, która jest bezpieczna do zastosowania w tym obszarze, wynosi 12 V AC. Tego rodzaju zasilanie jest skuteczne w eliminacji ryzyka niebezpiecznych sytuacji, jakie mogą wystąpić w wilgotnym środowisku. Przykładem zastosowania 12 V AC może być instalacja oświetlenia LED w kabinie prysznicowej lub nad wanną, gdzie bezpośredni kontakt z wodą stwarza dodatkowe zagrożenie. Zgodnie z normami IEC 60364, stosowanie niskiego napięcia, takiego jak 12 V, w obszarach o podwyższonym ryzyku, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Oprócz tego, systemy oświetleniowe zasilane niskim napięciem są często bardziej energooszczędne i umożliwiają zastosowanie rozwiązań z zakresu inteligentnego budownictwa, takich jak zdalne sterowanie oświetleniem.

Pytanie 12

Podczas wymiany trójfazowego wyłącznika różnicowoprądowego należy mieć na uwadze, że do wyłącznika nie może być podłączony przewód

A. neutralny N
B. fazowy L2
C. fazowy LI
D. ochronny PE
Odpowiedź dotycząca przewodu ochronnego PE jako nieodpowiedniego do podłączenia do trójfazowego wyłącznika różnicowoprądowego jest poprawna. Przewód ochronny PE ma za zadanie zapewnienie bezpieczeństwa użytkowników poprzez odprowadzenie prądu w przypadku awarii do ziemi, co zmniejsza ryzyko porażenia prądem elektrycznym. Wyłącznik różnicowoprądowy jest zaprojektowany do monitorowania różnicy prądów między przewodami fazowymi a neutralnym. Podłączenie przewodu PE do tego urządzenia nie tylko jest niezgodne z jego przeznaczeniem, ale również może prowadzić do niebezpiecznych sytuacji, w których wyłącznik nie zadziała w przypadku wykrycia różnicy prądu. Zgodnie z normami PN-IEC 61008-1, wyłączniki różnicowoprądowe powinny być podłączane w sposób, który umożliwia ich prawidłowe działanie i spełnienie wymogów związanych z ochroną przeciwporażeniową. Przykładem poprawnej instalacji jest wykorzystanie wyłącznika różnicowoprądowego w połączeniu z przewodami fazowymi i neutralnym, co zapewnia skuteczną ochronę i minimalizuje ryzyko uszkodzeń.

Pytanie 13

Podczas pracy szlifierka kątowa nagle przestała działać. Ustalono, że nie jest to spowodowane brakiem zasilania. Aby zlokalizować awarię, należy odłączyć napięcie, a następnie

A. zmierzyć temperaturę uzwojenia stojana
B. ocenić stan szczotek
C. sprawdzić rezystancję przewodu ochronnego
D. zmierzyć rezystancję izolacji kabla zasilającego
Odpowiedź 'sprawdzić stan szczotek' jest prawidłowa, ponieważ szczotki w szlifierkach kątowych odgrywają kluczową rolę w przewodzeniu prądu do wirnika silnika. Ich zużycie lub zablokowanie może prowadzić do przerwy w obwodzie, co objawia się nagłym zatrzymaniem urządzenia. Praktyczne podejście do diagnostyki polega na regularnym monitorowaniu stanu szczotek, co powinno być uwzględnione w harmonogramie konserwacji. W przypadku stwierdzenia ich zużycia zaleca się wymianę, aby uniknąć dalszych uszkodzeń silnika. Standardy branżowe, takie jak IEC 60034, podkreślają znaczenie utrzymania stanu technicznego maszyn elektrycznych, co obejmuje również regularne sprawdzanie i konserwację szczotek. Ponadto, warto zaznaczyć, że używanie oryginalnych części zamiennych zwiększa niezawodność i żywotność urządzeń, co jest zgodne z najlepszymi praktykami w dziedzinie elektryki i mechaniki.

Pytanie 14

W elektrycznej instalacji o napięciu 230 V, zasilanej z systemu sieciowego TN-S, zmierzona impedancja pętli zwarcia wynosi 2,5 Ω. Wskaż, które oznaczenie wyłącznika jest zgodne z wymogiem samoczynnego odłączenia zasilania jako środka ochrony przeciwporażeniowej w przypadku awarii w tej instalacji?

A. C10
B. C16
C. B16
D. B20
Odpowiedź 'B16' jest prawidłowa, ponieważ dotyczy wyłącznika, który spełnia wymogi samoczynnego wyłączenia zasilania w przypadku uszkodzenia. W przypadku instalacji o napięciu 230 V, zasilanej z sieci TN-S, ważne jest, aby wyłącznik miał odpowiednią wartość prądową oraz aby czas zadziałania był krótki, co pozwoli na zabezpieczenie osób przed porażeniem prądem. Zgodnie z normą PN-EN 61008-1, dla instalacji o impedancji pętli zwarcia wynoszącej 2,5 Ω, maksymalny czas zadziałania wyłącznika powinien wynosić 0,4 sekundy. Wyłącznik typu B16, charakteryzujący się prądem znamionowym 16 A, jest w stanie skutecznie zadziałać w tym czasie, co czyni go odpowiednim do ochrony przed porażeniem. Przykładowo, w domowych instalacjach elektrycznych często stosuje się wyłączniki B16 do zabezpieczenia obwodów oświetleniowych lub gniazd zasilających, co dodatkowo wspiera bezpieczeństwo użytkowników.

Pytanie 15

Jakie z wymienionych urządzeń, przy zastosowaniu przekaźnika termicznego oraz stycznika, umożliwia zapewnienie pełnej ochrony przed zwarciem i przeciążeniem silnika trójfazowego o parametrach: Pn = 5,5 kW, Un = 400/690 V?

A. Wyłącznik nadprądowy typu Z
B. Bezpiecznik typu aM
C. Bezpiecznik typu aR
D. Wyłącznik nadprądowy typu B
Bezpiecznik typu aM jest właściwym wyborem do zabezpieczenia silnika trójfazowego o mocy 5,5 kW i napięciu 400/690 V. Ten typ bezpiecznika został zaprojektowany do ochrony przed przeciążeniem i zwarciem w aplikacjach silnikowych. Charakteryzuje się on wydłużonym czasem reakcji na prąd przeciążeniowy, co pozwala na chwilowe przekroczenie prądu nominalnego bez wyzwolenia, co jest niezbędne w przypadku rozruchu silnika. Dzięki temu zabezpieczenie jest w stanie tolerować wyższe prądy startowe, co jest kluczowe w praktycznych zastosowaniach, takich jak uruchamianie maszyn w zakładach przemysłowych. Dodatkowo, zastosowanie przekaźnika termicznego oraz stycznika umożliwia pełne zabezpieczenie silnika, zapewniając nie tylko ochronę przed zwarciem, ale również przed długotrwałym przeciążeniem. Przykłady poprawnych zastosowań obejmują silniki napędowe w pompach, wentylatorach czy kompresorach, gdzie wymagane jest niezawodne zabezpieczenie przed uszkodzeniem. Wysoka jakość wykonania i zgodność z normami IEC 60269 sprawiają, że bezpieczniki typu aM są często preferowane w profesjonalnych instalacjach.

Pytanie 16

Który z wymienionych środków ochrony w przypadku uszkodzenia można stosować jedynie w sytuacji, gdy instalacja jest nadzorowana przez wykwalifikowane osoby?

A. Bardzo niskie napięcie PELV
B. Izolacja wzmocniona
C. Bardzo niskie napięcie SELV
D. Izolowanie stanowiska
Izolowanie stanowiska jest środkiem ochrony, który ma zastosowanie w sytuacjach, gdy instalacja elektryczna znajduje się pod nadzorem osób wykwalifikowanych. Oznacza to, że tylko kompetentne i przeszkolone osoby, które są w stanie ocenić ryzyko i podjąć odpowiednie środki ostrożności, mogą stosować ten rodzaj ochrony. Izolowanie stanowiska polega na odseparowaniu obszaru pracy od miejsca, w którym mogą występować zagrożenia związane z prądem elektrycznym, co pozwala na bezpieczne wykonywanie prac konserwacyjnych lub naprawczych. Przykładem zastosowania izolowania stanowiska jest praca w pobliżu urządzeń wysokiego napięcia, gdzie odpowiednia ocena ryzyka i nadzór techniczny są kluczowe dla zapewnienia bezpieczeństwa. Dobrą praktyką jest zawsze posiadanie procedur bezpieczeństwa oraz odpowiednich środków zabezpieczających, takich jak oznaczenia stref niebezpiecznych i stosowanie sprzętu ochrony osobistej. To podejście jest zgodne z normami BHP oraz regulacjami krajowymi, które nakładają obowiązek na pracodawców zapewnienia bezpiecznych warunków pracy na stanowiskach, gdzie może występować ryzyko porażenia prądem.

Pytanie 17

Której z poniższych czynności nie obejmuje zakres kontrolny badań instalacji elektrycznej?

A. Pomiarów oraz weryfikacji spadków napięć
B. Badania zabezpieczeń przed dotykiem pośrednim
C. Oględzin związanych z ochroną przeciwpożarową
D. Pomiarów rezystancji izolacji przewodów
Badania okresowe instalacji elektrycznej są niezbędnym elementem zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania systemów elektroenergetycznych. Pomiar rezystancji izolacji przewodów to kluczowy element tych badań, który pozwala na ocenę integralności izolacji. Niska rezystancja może wskazywać na uszkodzenia izolacji, co stwarza ryzyko porażenia prądem lub awarii systemu. Sprawdzanie ochrony przed dotykiem pośrednim, które ma na celu zminimalizowanie ryzyka kontaktu z elementami na potencjale uziemienia, również jest istotne w kontekście analiz okresowych. Oględziny dotyczące ochrony przeciwpożarowej, które obejmują ocenę układów elektrycznych pod kątem możliwości zapłonu lub zwarcia, są zgodne z normami bezpieczeństwa. Z kolei pomiar i sprawdzanie spadków napięć, chociaż ważne w kontekście analizy wydajności i jakości energii elektrycznej, nie jest częścią standardowego zakresu badań okresowych. Użytkownicy mogą mylnie uznać, że każde badanie związane z instalacją elektryczną powinno być uwzględnione w okresowych przeglądach, jednak różnica w celach tych badań jest kluczowa dla ich odpowiedniego przeprowadzenia. Właściwe podejście do badań określa, które pomiary są kluczowe dla dbałości o bezpieczeństwo oraz funkcjonalność instalacji.

Pytanie 18

Który z wymienionych wyłączników nadprądowych powinien zabezpieczać obwód zasilający trójfazowy silnik klatkowy o parametrach znamionowych: Pn = 11 kW, Un = 400 V, cos φ = 0,73, η = 80 %?

A. S303 C20
B. S303 C32
C. S303 C25
D. S303 C40
Wybór wyłącznika nadprądowego S303 C32 jest odpowiedni dla obwodu zasilania trójfazowego silnika klatkowego o parametrach Pn = 11 kW, Un = 400 V, cos φ = 0,73 oraz η = 80%. Przy obliczaniu prądu znamionowego silnika, korzystając z wzoru I = Pn / (√3 * Un * cos φ), otrzymujemy wartość około 18,7 A. Wyłącznik C32 ma zdolność przenoszenia prądu do 32 A, co daje odpowiedni margines bezpieczeństwa w przypadku przeciążeń, a także umożliwia ochronę przed zwarciami. Dobrą praktyką w doborze wyłączników jest uwzględnienie dodatkowego zapasu prądowego, co chroni instalację przed uszkodzeniem. Na przykład, w przypadku rozruchu silnika, prąd może wzrosnąć do 6-7 razy wartości nominalnej, dlatego rekomenduje się stosowanie wyłączników z wyższymi wartościami znamionowymi. Zgodnie z normami PN-EN 60947-2, wyłączniki muszą być dostosowane do specyficznych warunków pracy, co czyni wybór S303 C32 właściwym rozwiązaniem w kontekście zapewnienia bezpieczeństwa i niezawodności systemu zasilania.

Pytanie 19

W tabeli przedstawiono parametry znamionowe silnika jednofazowego. Uruchomienie tego silnika bez kondensatora rozruchowego spowoduje

Typ silnikaSEh 80-2BF
Moc1,1 kW
Prędkość obrotowa2780 obr/min
Sprawność72%
Napięcie zasilania230 V, 50 Hz
Stopień ochronyIP 54
Rodzaj pracyS1
Współczynnik mocy0,97
Pojemność kondensatora pracy25 μF
Pojemność kondensatora rozruchowego70 μF
A. zadziałanie wyłącznika różnicowoprądowego.
B. zmniejszenie momentu rozruchowego.
C. zmniejszenie mocy silnika.
D. uszkodzenie silnika.
Wybór odpowiedzi, że uruchomienie silnika jednofazowego bez kondensatora rozruchowego skutkuje zmniejszeniem mocy silnika, jest oparty na nieporozumieniu dotyczących zasad działania silników jednofazowych. Przede wszystkim, moc silnika jest zdefiniowana jako iloczyn momentu obrotowego i prędkości kątowej. Zmniejszenie mocy nie jest bezpośrednim skutkiem braku kondensatora, ale raczej niewłaściwego momentu obrotowego, który uniemożliwia start silnika. W pozostałych odpowiedziach również pojawiają się nieprawidłowe rozumowania. Na przykład, stwierdzenie, że brak kondensatora spowoduje zadziałanie wyłącznika różnicowoprądowego, jest mylne, ponieważ wyłączniki te działają w odpowiedzi na różnice prądów między przewodami, co nie ma związku z momentem rozruchowym silnika. Ostatnia odpowiedź sugerująca uszkodzenie silnika również jest nieprecyzyjna, ponieważ sam fakt braku kondensatora niekoniecznie prowadzi do uszkodzenia, lecz do niezdolności do uruchomienia. W praktyce, ważne jest zrozumienie, że silnik jednofazowy działający bez kondensatora może nie zacząć pracować, co w dłuższym okresie może prowadzić do jego uszkodzenia, ale samo w sobie nie jest to natychmiastowym skutkiem działania. Błędne odpowiedzi często wynikają z nieznajomości podstawowych zasad elektrotechniki oraz mechaniki ruchu obrotowego, dlatego kluczowe jest zapoznanie się z literaturą fachową oraz standardami, które dokładnie opisują zasady działania silników elektrycznych.

Pytanie 20

Zwiększenie liczby kabli umieszczonych w jednej rurze instalacyjnej spowoduje

A. zmniejszenie dopuszczalnego obciążenia prądem długotrwałym jednego kabla
B. zwiększenie dozwolonej wartości spadku napięcia na kablach
C. wydłużenie czasu osiągania granicznej temperatury izolacji kabli
D. zmniejszenie wartości obliczeniowej rezystancji żył pojedynczego kabla
Zwiększenie liczby przewodów ułożonych w jednej rurze instalacyjnej prowadzi do zmniejszenia dopuszczalnego obciążenia prądem długotrwałym pojedynczego przewodu. Jest to związane z zasadą, że im więcej przewodów umieszczonych w tej samej przestrzeni, tym większa emisja ciepła z tych przewodów, ponieważ nie mają one wystarczającej przestrzeni na odprowadzenie ciepła. Zgodnie z normami, takimi jak PN-IEC 60364, dopuszczalne obciążenie prądowe przewodów uzależnione jest od ich zdolności do odprowadzania ciepła, co jest kluczowe dla zachowania bezpieczeństwa instalacji. Na przykład, w przypadku układania kilku przewodów w jednej rurze, każdy z nich może nie być w stanie wytrzymać standardowych wartości obciążenia, co prowadzi do przegrzewania i potencjalnych uszkodzeń izolacji. Dlatego w praktyce, dla instalacji elektrycznych, często stosuje się ograniczenia dotyczące liczby przewodów w jednej rurze oraz jej średnicy, aby zapewnić odpowiednią wentylację i chłodzenie.

Pytanie 21

Jaki przyrząd jest wykorzystywany do pomiaru rezystancji izolacji kabli?

A. Pirometr
B. Sonometr
C. Megaomomierz
D. Waromierz
Megaomomierz jest urządzeniem służącym do pomiaru rezystancji izolacji, które jest niezwykle istotne w kontekście bezpieczeństwa elektrycznego. Jego zastosowanie polega na sprawdzaniu jakości izolacji przewodów oraz urządzeń elektrycznych, co pozwala na wykrycie ewentualnych uszkodzeń izolacji, które mogą prowadzić do awarii lub zagrożeń, takich jak porażenie prądem. Dzięki pomiarom wykonywanym przy użyciu megaomomierza, można ocenić stan izolacji w instalacjach elektrycznych, co jest zgodne z normami takimi jak PN-EN 61557-2, które określają procedury testowania urządzeń elektrycznych. W praktyce, megaomomierz jest używany podczas regularnych przeglądów instalacji elektrycznych w budynkach, co ma na celu zapewnienie odpowiedniego poziomu bezpieczeństwa i zgodności z obowiązującymi przepisami. Użycie tego narzędzia pozwala na wczesne wykrywanie problemów, co przyczynia się do minimalizacji ryzyka wystąpienia awarii oraz zwiększa trwałość systemów elektrycznych.

Pytanie 22

W jaki sposób zmieni się prędkość obrotowa silnika synchronicznego, gdy liczba par biegunów w jego tworniku zostanie zmieniona z 2 na 1?

A. Dwukrotnie zmniejszy się
B. Czterokrotnie zmniejszy się
C. Czterokrotnie wzrośnie
D. Dwukrotnie wzrośnie
Prędkość obrotowa silnika synchronicznego jest ściśle związana z częstotliwością prądu zasilającego oraz liczbą par biegunów w uzwojeniach silnika. Zgodnie z zasadą synchronizacji, prędkość obrotowa silnika synchronicznego (n) oblicza się za pomocą wzoru: n = (120 * f) / p, gdzie f to częstotliwość prądu w hercach, a p to liczba par biegunów. W przypadku zmiany liczby par biegunów z 2 na 1, mamy do czynienia ze zmniejszeniem liczby par biegunów o połowę, co skutkuje podwojeniem prędkości obrotowej. W praktyce oznacza to, że silnik będzie pracować z wyższą prędkością, co jest istotne w aplikacjach wymagających zwiększenia efektywności operacyjnej, takich jak napędy wentylatorów czy pomp. W przemyśle zastosowanie silników synchronicznych z mniejszą liczbą par biegunów może umożliwić osiągnięcie wyższej wydajności energetycznej, co jest zgodne z aktualnymi trendami dążącymi do optymalizacji procesów produkcyjnych oraz redukcji kosztów eksploatacyjnych.

Pytanie 23

Jakie warunki muszą zostać spełnione podczas pomiaru rezystancji izolacji w instalacji elektrycznej po wcześniejszym odłączeniu napięcia zasilającego?

A. Odłączone odbiorniki od gniazd wtyczkowych, włączone przełączniki oświetleniowe, zamontowane źródła światła
B. Odłączone odbiorniki od gniazd wtyczkowych, włączone przełączniki oświetleniowe, wymontowane źródła światła
C. Włączone odbiorniki do gniazd wtyczkowych, włączone przełączniki oświetleniowe, zamontowane źródła światła
D. Włączone odbiorniki do gniazd wtyczkowych, włączone przełączniki oświetleniowe, wymontowane źródła światła
Przy wykonywaniu pomiaru rezystancji izolacji w instalacji elektrycznej, kluczowe jest zapewnienie kompletnego bezpieczeństwa oraz dokładności uzyskiwanych wyników. Wyłączenie odbiorników z gniazd wtyczkowych eliminuje ryzyko przypadkowego załączenia obwodu, co mogłoby zafałszować wyniki pomiarów lub spowodować niebezpieczne sytuacje. Włączone łączniki oświetleniowe pozwalają na uzyskanie pełnej charakterystyki instalacji, ponieważ pomiar dotyczy także przewodów i elementów, które są podłączone do tych łączników. Wymontowanie źródeł światła jest istotne, ponieważ ich obecność może wprowadzać dodatkowe oporności i niepożądane elementy do obwodu, co może również wpłynąć na wynik pomiaru. Zgodnie z normami, takimi jak PN-EN 61557-2, poprawne wykonanie pomiarów rezystancji izolacji jest podstawą do oceny stanu technicznego instalacji oraz zapewnienia jej bezpieczeństwa użytkowania. W praktyce, przestrzeganie tych zasad jest kluczowe dla administratorów budynków, elektryków oraz firm zajmujących się konserwacją i modernizacją instalacji elektrycznych.

Pytanie 24

Jak zmieni się ilość ciepła wydobywanego przez grzejnik elektryczny w jednostce czasu, jeśli jego spiralę grzejną skróci się o połowę, a napięcie zasilające pozostanie takie samo?

A. Zmniejszy się dwukrotnie
B. Zmniejszy się czterokrotnie
C. Zwiększy się czterokrotnie
D. Zwiększy się dwukrotnie
Odpowiedź "Zwiększy się dwukrotnie" jest prawidłowa, ponieważ jest zgodna z prawem Ohma oraz zasadami dotyczącymi oporu elektrycznego w elementach grzewczych. Gdy długość spiralę grzejną skracamy o połowę, to zmniejszamy jej opór o połowę, ponieważ opór elektryczny przewodnika jest proporcjonalny do jego długości. Przy zachowaniu stałego napięcia zasilania, zgodnie z prawem Ohma (I = U/R), prąd przepływający przez grzejnik wzrośnie, gdyż opór maleje. W rezultacie moc wydzielająca się w postaci ciepła w grzałce elektrycznej, która jest opisana wzorem P = U * I, wzrośnie. Podstawiając wyrażenia do wzoru, otrzymujemy, że moc wzrasta dwukrotnie przy zmniejszonym oporze. W praktyce, jest to istotne przy projektowaniu urządzeń grzewczych, gdzie zmiana długości elementów grzewczych może wpływać na ich efektywność. Dobrą praktyką jest przeprowadzanie obliczeń związanych z oporem i mocą, aby zapobiec przegrzaniu lub uszkodzeniu grzałek w systemach grzewczych.

Pytanie 25

W trakcie serwisowania silnika indukcyjnego jednofazowego pracownik przez przypadek zamienił miejscami kondensator rozruchowy o pojemności 300 µF z kondensatorem roboczym o pojemności 50 µF. Jakie mogą być konsekwencje tego błędu?

A. Silnik zmieni swój kierunek obrotów
B. Uszkodzenie uzwojenia pomocniczego po kilku minutach działania silnika
C. Silnik nie włączy się
D. Zniszczenie kondensatora 50 µF podczas uruchamiania silnika
Istnieje kilka nieporozumień związanych z błędnymi odpowiedziami. Zamiana kondensatora rozruchowego z kondensatorem pracy nie spowoduje uszkodzenia kondensatora 50 µF w chwili rozruchu, ponieważ kondensator ten nie jest przeznaczony do pracy w warunkach rozruchowych. Jego zadaniem jest podtrzymywanie momentu obrotowego podczas pracy silnika. Dodatkowo, zmiana kierunku wirowania silnika nie jest możliwa w tej sytuacji. Kierunek obrotów silnika indukcyjnego jednofazowego jest determinowany przez przesunięcie fazowe, które nie zostanie osiągnięte przy użyciu niewłaściwego kondensatora. Co więcej, twierdzenie, że uzwojenie pomocnicze może się uszkodzić po kilku minutach pracy, jest również błędne, ponieważ w rzeczywistości silnik po prostu nie uruchomi się, co zapobiegnie jego uszkodzeniu. Kluczowym błędem myślowym w tych odpowiedziach jest niezrozumienie zasady działania kondensatorów w silnikach jednofazowych, co prowadzi do nieprawidłowych wniosków o skutkach zamiany kondensatorów. Zastosowanie niewłaściwego kondensatora w systemach elektrycznych może prowadzić do nieodwracalnych uszkodzeń, dlatego istotne jest przestrzeganie zaleceń producentów oraz standardów branżowych przy konserwacji i naprawie urządzeń elektrycznych.

Pytanie 26

Jakie prace są dozwolone w instalacjach elektrycznych, które nie są wyłączone spod napięcia w sieci TN?

A. Wymiana wkładek bezpiecznikowych.
B. Wykonywanie pomiaru rezystancji izolacji instalacji.
C. Zamiana gniazdek.
D. Dokręcanie przewodów w złączach.
Wymiana wkładek bezpiecznikowych w instalacjach elektrycznych niewyłączonych spod napięcia w układzie sieciowym TN jest dozwolona, ponieważ ta czynność nie wiąże się z bezpośrednim narażeniem pracownika na kontakt z elementami pod napięciem. Wkładki bezpiecznikowe są elementami, które można wymieniać bez rozłączania obwodu, co jest zgodne z zasadami bezpieczeństwa określonymi w normach PN-IEC 60364. W praktyce, wymiana wkładek bezpiecznikowych jest powszechnie stosowaną procedurą, która może być przeprowadzana przez przeszkolonych pracowników elektrycznych, co pozwala na kontynuowanie pracy urządzeń w przypadku awarii. W kontekście dobrych praktyk, istotne jest, aby personel posiadał odpowiednie kwalifikacje oraz znał zasady BHP, co zapewnia bezpieczeństwo podczas takich operacji. Zastosowanie odpowiednich narzędzi oraz przestrzeganie procedur operacyjnych pozwala na zminimalizowanie ryzyka i zapewnienie ciągłości zasilania w instalacjach elektrycznych.

Pytanie 27

Możliwość przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do korpusu można ustalić przez pomiar

A. prądu upływu
B. symetrii uzwojeń
C. rezystancji uzwojeń stojana
D. rezystancji przewodu ochronnego
Pomiar rezystancji uzwojeń stojana oraz rezystancji przewodu ochronnego nie dostarcza bezpośrednich informacji na temat stanu izolacji względem korpusu silnika. Rezystancja uzwojeń wskazuje na ich ogólny stan, ale nie uwzględnia ewentualnych uszkodzeń izolacji, które mogą występować w postaci przebicia. Tego rodzaju defekty mogą być niewidoczne podczas pomiarów rezystancji, co prowadzi do fałszywego poczucia bezpieczeństwa. Z kolei pomiar rezystancji przewodu ochronnego odnosi się do skuteczności uziemienia, które ma na celu ochronę przed porażeniem prądem elektrycznym, ale nie jest wskaźnikiem stanu izolacji wewnętrznej uzwojeń. Symetria uzwojeń, mimo że jest istotna dla prawidłowego działania silnika, nie ma bezpośredniego związku z izolacją. Problemy z symetrią mogą prowadzić do nierównomiernego rozkładu prądów w uzwojeniach, co z kolei może powodować przegrzewanie silnika, ale nie wykryje uszkodzeń izolacji. W branży elektrotechnicznej kluczowe jest zrozumienie, że różne metody pomiarowe mają swoje unikalne zastosowania i ograniczenia, a ich niewłaściwe stosowanie może prowadzić do niebezpieczeństwa oraz kosztownych napraw. Warto zwracać uwagę na odpowiednie procedury diagnostyczne, aby zapewnić bezpieczeństwo i efektywność działania maszyn elektrycznych.

Pytanie 28

Która z poniższych informacji powinna być wyeksponowana na elektrycznym urządzeniu napędowym?

A. Strzałka wskazująca wymagany kierunek obrotu
B. Termin kolejnego przeglądu technicznego
C. Typ zastosowanych zabezpieczeń przeciwzwarciowych
D. Poziom odchylenia napięcia zasilającego
Strzałka oznaczająca wymagany kierunek wirowania jest kluczowym elementem oznaczenia elektrycznego urządzenia napędowego, który musi być widoczny dla operatorów i personelu technicznego. Oznaczenie to jest niezbędne, aby zapewnić poprawne uruchomienie i eksploatację maszyny. W przypadku napędów elektrycznych, niewłaściwy kierunek wirowania może prowadzić do poważnych uszkodzeń mechanicznych, zwiększonego zużycia energii oraz zagrożeń dla bezpieczeństwa pracowników. W praktyce oznaczenie kierunku wirowania powinno być zgodne z obowiązującymi standardami, takimi jak norma PN-EN 60204-1 dotycząca bezpieczeństwa maszyn oraz prawidłowej obsługi urządzeń elektrycznych. Przykładowo, w przypadku silników elektrycznych, strzałka na obudowie silnika wskazuje, w którą stronę wirnik powinien się obracać podczas pracy. Niezastosowanie się do tych oznaczeń może skutkować błędami w procesu produkcji, a także prowadzić do znacznych kosztów napraw i przestojów.

Pytanie 29

Jaką wartość skuteczną ma przemienne napięcie dotykowe, które może być stosowane przez dłuższy czas w normalnych warunkach środowiskowych, dla oporu ciała ludzkiego wynoszącego około 1 kΩ?

A. 12 V
B. 50 V
C. 25 V
D. 60 V
Wartość skuteczna przemiennego napięcia dotykowego, która jest dopuszczalna długotrwale w warunkach normalnych dla rezystancji ciała ludzkiego wynoszącej około 1 kΩ, wynosi 50 V. To napotykane w praktyce napięcie odnosi się do wyjątkowo istotnych norm bezpieczeństwa elektrycznego, takich jak normy IEC 60479, które klasyfikują skutki działania prądu elektrycznego na ciało ludzkie. Napięcie dotykowe 50 V jest graniczną wartością, poniżej której ryzyko porażenia prądem jest znacznie mniejsze, a powyżej której mogą wystąpić niebezpieczne skutki. W praktyce oznacza to, że instalacje elektryczne, które są do 50 V, są uważane za bezpieczne przy normalnych warunkach użytkowania. Przykłady zastosowania tej wiedzy obejmują projektowanie systemów zasilania w budynkach mieszkalnych oraz w urządzeniach użytkowych, gdzie zastosowane napięcia nie powinny przekraczać tej wartości, aby zminimalizować ryzyko dla użytkowników, zwłaszcza w miejscach narażonych na wilgoć, takich jak łazienki czy kuchnie. Zrozumienie i przestrzeganie tych ograniczeń jest kluczowe dla bezpieczeństwa użytkowników oraz zgodności z obowiązującymi przepisami i normami branżowymi.

Pytanie 30

Jakie powinno być napięcie pomiarowe przy ocenie rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V, w których brak jest ochrony przed przepięciami?

A. 500 V
B. 250 V
C. 1 000 V
D. 750 V
Wynik 500 V jako wymagane napięcie pomiarowe przy badaniu rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V bez ochrony przeciwprzepięciowej jest zgodny z zaleceniami normy PN-EN 61557-2, która określa metody pomiaru rezystancji izolacji. Użycie napięcia 500 V pozwala na uzyskanie wiarygodnych wyników pomiarów, ponieważ jest wystarczające do wykrycia potencjalnych uszkodzeń izolacji, które mogą prowadzić do zwarć lub innych awarii. W praktyce, pomiar 500 V jest standardowo stosowany zarówno w budynkach mieszkalnych, jak i przemysłowych, co zapewnia bezpieczeństwo użytkowników oraz niezawodność instalacji. Ważne jest, aby pomiar był przeprowadzany w odpowiednich warunkach, a urządzenia pomiarowe były regularnie kalibrowane. Przykładem zastosowania może być ocena stanu izolacji w trakcie przeglądów okresowych instalacji, co pozwala na wczesne wykrycie problemów, zanim dojdzie do poważnych awarii lub zagrożeń.

Pytanie 31

Jaką maksymalną wartość prądu zadziałania można ustawić na przekaźniku termobimetalowym w obwodzie zasilającym silnik asynchroniczny o parametrach UN = 400 V, PN = 0,37 kW, I = 1,05 A, n = 2710 l/min, aby zapewnić skuteczną ochronę przed przeciążeniem?

A. It=1,15 A
B. It=1,05 A
C. It=0,88 A
D. It=1,33 A
Prąd zadziałania 1,15 A na przekaźniku termobimetalowym to naprawdę dobry wybór do ochrony silnika asynchronicznego o takich danych jak UN = 400 V, PN = 0,37 kW oraz I = 1,05 A. W praktyce przekaźniki termobimetalowe ustawiamy na wartość trochę wyższą od prądu znamionowego silnika. W tym przypadku 1,15 A to dobra decyzja, bo zapewnia odpowiednią ochronę przed przeciążeniem, a jednocześnie daje trochę luzu na krótkie wzrosty prądu, które mogą wystąpić na przykład podczas rozruchu. Ta zasada jest zgodna z normą PN-EN 60204-1, która mówi o bezpieczeństwie w instalacjach elektrycznych maszyn. Dzięki temu silnik nie będzie miał problemów z uszkodzeniami spowodowanymi długotrwałym przeciążeniem, co w efekcie wydłuża jego żywotność i zwiększa niezawodność całego systemu. Na przykład, w przemyśle silnik napędzający wentylator potrzebuje odpowiednio ustawionych przekaźników, żeby wszystko działało bez zarzutu i żeby zminimalizować ryzyko awarii.

Pytanie 32

Aby ocenić efektywność ochrony przeciwporażeniowej w silniku trójfazowym działającym w systemie TN-S, konieczne jest przeprowadzenie pomiaru

A. rezystancji uzwojeń fazowych silnika
B. prądu zadziałania wyłącznika instalacyjnego nadprądowego
C. impedancji pętli zwarcia w instalacji
D. czasu reakcji przekaźnika termobimetalowego
Odpowiedzi, które nie wskazują na pomiar impedancji pętli zwarcia, nie są właściwe w kontekście oceny skuteczności ochrony przeciwporażeniowej. Pomiar prądu zadziałania wyłącznika instalacyjnego nadprądowego, choć istotny, nie dostarcza pełnej informacji o skuteczności ochrony. Wyłącznik nadprądowy nie jest jedynym elementem ochrony, a jego prawidłowe działanie nie gwarantuje, że system jest odporny na wszystkie rodzaje uszkodzeń. Oprócz tego, pomiar rezystancji uzwojeń fazowych silnika, choć może być przydatny w diagnostyce silnika, nie odnosi się bezpośrednio do kwestii zadziałania zabezpieczeń w przypadku zwarcia. Z kolei pomiar czasu zadziałania przekaźnika termobimetalowego dotyczy ochrony przeciążeniowej, a nie bezpośrednio ochrony przeciwporażeniowej. Należy pamiętać, że skuteczna ochrona przeciwporażeniowa wymaga systematycznego monitora impedancji pętli zwarcia, co pozwala na identyfikację potencjalnych problemów w instalacji, które mogą prowadzić do poważnych zagrożeń. Kluczowym błędem jest zatem skupienie się na elementach, które nie dotyczą bezpośrednio ochrony przed porażeniem elektrycznym, co może prowadzić do fałszywego poczucia bezpieczeństwa.

Pytanie 33

Który przekrój kabla najczęściej używa się do tworzenia obwodów gniazdek w instalacjach domowych podtynkowych?

A. 1,5 mm²
B. 1 mm²
C. 2,5 mm²
D. 4 mm²
Przekrój przewodu 2,5 mm² jest najczęściej stosowany do wykonywania obwodów gniazd wtyczkowych w instalacjach mieszkaniowych podtynkowych, ponieważ zapewnia odpowiednią nośność prądową oraz minimalizuje ryzyko przegrzewania się przewodów. Zgodnie z normą PN-IEC 60364, obwody gniazd wtyczkowych powinny być projektowane z uwzględnieniem maksymalnych obciążeń, które mogą wystąpić w gospodarstwie domowym. Obwody z przekrojem 2,5 mm² są w stanie obsłużyć obciążenie do 16A, co jest wystarczające dla większości sprzętu AGD oraz elektroniki. Przykładowo, standardowa pralka, zmywarka czy kuchenka elektryczna wymagają takiego przekroju, aby zapewnić ich prawidłowe działanie. Użycie mniejszych przekrojów, takich jak 1 mm² czy 1,5 mm², może prowadzić do nadmiernego nagrzewania się przewodów, co zwiększa ryzyko pożaru. Dlatego stosowanie przewodów o przekroju 2,5 mm² w gniazdach wtyczkowych jest zgodne z zasadami bezpieczeństwa oraz dobrymi praktykami w zakresie instalacji elektrycznych.

Pytanie 34

Aby zapewnić skuteczną ochronę przed porażeniem prądem dla użytkowników gniazd wtyczkowych z prądem nieprzekraczającym 32 A, należy je chronić wyłącznikiem różnicowoprądowym o nominalnym prądzie różnicowym wynoszącym

A. 30 mA
B. 500 mA
C. 100 mA
D. 1 000 mA
Wyłącznik różnicowoprądowy o znamionowym prądzie różnicowym równym 30 mA jest uważany za standard w przypadku ochrony użytkowników obwodów gniazd wtyczkowych o prądzie nieprzekraczającym 32 A. Jego głównym zadaniem jest szybka detekcja prądów upływowych, które mogą stwarzać zagrożenie porażenia prądem elektrycznym. Prąd różnicowy 30 mA jest skutecznym zabezpieczeniem, które wyłącza obwód w przypadku wykrycia różnicy prądów powyżej tej wartości, co znacząco redukuje ryzyko poważnych obrażeń ciała. W praktyce, w przypadku zastosowań w domach i lokalach użyteczności publicznej, wyłączniki te są często stosowane w obwodach zasilających gniazda, gdzie użytkownicy mogą mieć styczność z wodą lub wilgotnymi warunkami. Dodatkowo, zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe o prądzie różnicowym 30 mA powinny być standardem w instalacjach elektrycznych, gdzie występuje ryzyko porażenia ciała ludzkiego.

Pytanie 35

Jakie zadania przy aktywnych urządzeniach elektrycznych można zrealizować bez zlecenia?

A. Dotyczące ratowania życia lub zdrowia osób
B. Przeprowadzane przy użyciu spawania oraz wymagające pracy z otwartym źródłem ognia
C. Realizowane w sytuacjach stwarzających szczególne niebezpieczeństwo dla życia lub zdrowia osób
D. Dotyczące konserwacji bądź napraw urządzeń, które są całkowicie lub częściowo pod napięciem
Odpowiedź związana z ratowaniem zdrowia lub życia ludzkiego jest poprawna, ponieważ w sytuacjach nagłych, takich jak wypadki czy inne niebezpieczeństwa, działania podejmowane w celu ochrony życia i zdrowia osób są priorytetowe. Zgodnie z przepisami prawa pracy oraz normami BHP, w przypadkach zagrożenia zdrowia lub życia ludzkiego, pracownicy mają prawo i obowiązek podejmować natychmiastowe działania ratunkowe, nawet jeśli wiąże się to z pracami przy czynnych urządzeniach elektrycznych. Na przykład, gdy osoba zostaje porażona prądem, każdy świadek zdarzenia powinien jak najszybciej odciąć zasilanie i udzielić pierwszej pomocy. Takie podejście jest zgodne z wytycznymi dotyczącymi bezpieczeństwa pracy, które nakładają na pracowników obowiązek reagowania na sytuacje kryzysowe bez czekania na formalne instrukcje. W praktyce, to może oznaczać konieczność szybkiego działania, co jest kluczowe dla zapobiegania poważnym obrażeniom lub śmierci.

Pytanie 36

Jaką maksymalną wartość impedancji pętli zwarcia można zastosować w trójfazowym układzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczność ochrony przeciwporażeniowej w przypadku uszkodzenia izolacji, gdy wyłączenie tego obwodu ma być realizowane przez instalacyjny wyłącznik nadprądowy C10?

A. 7,7 Ω
B. 8,0 Ω
C. 2,3 Ω
D. 4,6 Ω
Maksymalna dopuszczalna wartość impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V wynosząca 2,3 Ω jest zgodna z wymaganiami bezpieczeństwa, które zapewniają skuteczną ochronę przeciwporażeniową. W przypadku uszkodzenia izolacji, odpowiednia impedancja pętli zwarcia pozwala na szybkie wyłączenie zasilania przez wyłącznik nadprądowy, w tym przypadku typu C10. Zgodnie z normą PN-IEC 60364, szybkość wyłączenia zasilania jest kluczowa dla ochrony osób przed porażeniem prądem. Wyłącznik C10 ma charakterystykę, która zapewnia zadziałanie przy prądzie zwarciowym wynoszącym 10 A. W praktyce, im niższa impedancja pętli zwarcia, tym wyższy prąd zwarciowy, co przyspiesza zadziałanie wyłącznika. Przykładowo, przy impedancji 2,3 Ω, prąd zwarciowy wynosi około 174 A, co pozwala na zadziałanie wyłącznika w czasie nieprzekraczającym 0,4 sekundy. Takie wartości są zgodne z zasadami projektowania instalacji elektrycznych, które mają na celu minimalizację ryzyka porażenia prądem elektrycznym.

Pytanie 37

Podczas wymiany uszkodzonego przewodu PEN w instalacji o napięciu do 1 kV, która jest trwale zamontowana, należy pamiętać, aby nowy przewód miał przekrój co najmniej

A. 16 mm2 Cu lub 16 mm2 Al
B. 16 mm2 Cu lub 10 mm2 Al
C. 10 mm2 Cu lub 10 mm2 Al
D. 10 mm2 Cu lub 16 mm2 Al
Wybór odpowiedzi 10 mm2 Cu lub 16 mm2 Al jako minimalnego przekroju przewodu PEN w instalacji do 1 kV jest zgodny z obowiązującymi standardami oraz najlepszymi praktykami w zakresie instalacji elektrycznych. Przewód PEN, który łączy funkcje przewodu neutralnego i ochronnego, odgrywa kluczową rolę w zapewnieniu bezpieczeństwa instalacji. W przypadku zastosowania przewodów miedzianych, minimalny przekrój 10 mm2 jest zgodny z normą PN-IEC 60364, która określa wymagania dla instalacji elektrycznych. Przewody aluminiowe muszą mieć większy przekrój, 16 mm2, ze względu na niższą przewodność elektryczną w porównaniu do miedzi. W praktyce, zastosowanie przewodu o odpowiednim przekroju zapewnia właściwe odprowadzanie prądu oraz minimalizuje ryzyko przegrzewania się przewodów, co z kolei zmniejsza ryzyko wystąpienia awarii instalacji. Dodatkowo, dobranie odpowiedniego przekroju przewodów wpływa na efektywność energetyczną instalacji oraz na jej długowieczność.

Pytanie 38

Do zadań realizowanych w trakcie inspekcji podczas pracy silnika elektrycznego prądu stałego nie wchodzi kontrolowanie

A. stanu szczotek
B. konfiguracji zabezpieczeń
C. intensywności drgań
D. odczytów aparatury kontrolno-pomiarowej
Odpowiedź "stanu szczotek" jest w porządku. Wiesz, że podczas przeglądania silnika elektrycznego prądu stałego nie sprawdza się bezpośrednio stanu szczotek. Sprawdzanie ich to część konserwacji, a to z kolei oznacza, że trzeba je wymieniać co jakiś czas i kontrolować. Zmiana szczotek powinna być robiona według tego, co mówi producent oraz z zachowaniem odpowiednich zasad bezpieczeństwa. Oczywiście, kontrola stanu szczotek jest ważna, ale nie robi się tego na co dzień, gdy silnik pracuje. W trakcie oględzin silnika trzeba zwrócić uwagę na parametry robocze, takie jak to, co pokazuje aparatura kontrolno-pomiarowa, poziom drgań i ustawienia zabezpieczeń. Te rzeczy mają ogromny wpływ na bezpieczeństwo i wydajność silnika. Na przykład, regularne sprawdzanie parametrów przez system monitoringu i ich analiza mogą pomóc uniknąć większych awarii i poprawić efektywność działania.

Pytanie 39

W przypadku gdy instrukcje stanowiskowe nie określają szczegółowych terminów, przegląd urządzeń napędowych powinien być przeprowadzany przynajmniej raz na

A. dwa lata
B. rok
C. cztery lata
D. pięć lat
Odpowiedzi wskazujące na cztery lata, rok lub pięć lat jako okres pomiędzy przeglądami urządzeń napędowych wykazują brak zrozumienia zasadności i potrzeby regularnych inspekcji. Zbyt długi okres przeglądów, na przykład cztery czy pięć lat, może prowadzić do nieodkrycia istotnych usterek, które mogą zagrażać bezpieczeństwu użytkowników oraz powodować poważne straty finansowe w wyniku awarii. Często mylone jest również pojęcie regularności przeglądów z intensywnością eksploatacji urządzeń; niezależnie od tego, jak intensywnie urządzenie jest używane, powinno być regularnie sprawdzane. Z kolei odpowiedź 'rok' jest niewystarczająca, ponieważ w przypadku wielu urządzeń napędowych, taki okres może być zbyt krótki, a niewłaściwe przeglądy mogą prowadzić do nadmiernych kosztów operacyjnych. Każdy system napędowy ma swoje specyficzne wymagania i normy, które powinny być brane pod uwagę przy ustalaniu harmonogramu przeglądów, a ogólne zasady wskazują na dwa lata jako maksymalny okres, który zapewnia bezpieczeństwo i efektywność działania urządzeń. Zrozumienie tych zasad jest kluczowe dla każdej osoby pracującej w obszarze zarządzania urządzeniami oraz ich konserwacją.

Pytanie 40

Jakie urządzenie wykorzystuje się do określenia prędkości obrotowej wału silnika?

A. induktor
B. pirometr
C. przekładnik napięciowy
D. prądnicę tachometryczną
Prądnica tachometryczna jest urządzeniem służącym do pomiaru prędkości obrotowej wału silnika poprzez generowanie napięcia elektrycznego proporcjonalnego do tej prędkości. Jej działanie opiera się na zasadzie elektromechanicznej, gdzie wirnik prądnicy obracany przez wał silnika wytwarza napięcie elektryczne, które jest bezpośrednio związane z prędkością obrotową. W praktyce, prądnice tachometryczne są szeroko stosowane w różnych zastosowaniach przemysłowych, takich jak automatyka, robotyka czy systemy sterowania silnikami. Dzięki ich wysokiej dokładności, stosowane są w precyzyjnych układach regulacji prędkości, co pozwala na optymalne zarządzanie procesami technologicznymi. W branży inżynieryjnej, prądnice tachometryczne są często preferowane ze względu na ich stabilność i niezawodność, co wpisuje się w najlepsze praktyki projektowania systemów z kontrolą prędkości. Dodatkowo, są one zgodne z normami IEC oraz ISO, co zapewnia ich uniwersalność i szerokie zastosowanie w przemyśle. Dzięki tym cechom, prądnice tachometryczne stanowią kluczowy element w nowoczesnych systemach pomiarowych i kontrolnych.